骨髓炎
微波食品加热
材料科学
电子
氧气
微生物燃料电池
医学
化学
外科
物理化学
有机化学
物理
电极
量子力学
阳极
作者
Shasha Liao,Shuilin Wu,Congyang Mao,Chaofeng Wang,Zhenduo Cui,Yufeng Zheng,Zhaoyang Li,Hui Jiang,Shengli Zhu,Xiangmei Liu
出处
期刊:Small
[Wiley]
日期:2024-02-05
被引量:1
标识
DOI:10.1002/smll.202312280
摘要
Abstract Antibiotics are frequently used to clinically treat osteomyelitis caused by bacterial infections. However, extended antibiotic use may result in drug resistance, which can be life threatening. Here, a heterojunction comprising Fe 2 O 3 /Fe 3 S 4 magnetic composite is constructed to achieve short‐term and efficient treat osteomyelitis caused by methicillin‐resistant Staphylococcus aureus (MRSA). The Fe 2 O 3 /Fe 3 S 4 composite exhibits powerful microwave (MW) absorption properties, thereby effectively converting incident electromagnetic energy into thermal energy. Density functional theory calculations demonstrate that Fe 2 O 3 /Fe 3 S 4 possesses significant charge accumulation and oxygen‐fixing capacity at the heterogeneous interface, which provides more active sites and oxygen sources for trapping electromagnetic hotspots. The finite element analysis indicates that Fe 2 O 3 /Fe 3 S 4 displays a larger electromagnetism field enhancement parameter than Fe 2 O 3 owing to a significant increase in electromagnetic hotspots. These hotspots contribute to charge differential accumulation and depletion motions at the interface, thereby augmenting the release of free electrons that subsequently combine with the oxygen adsorbed by Fe 2 O 3 /Fe 3 S 4 to generate reactive oxygen species (ROS) and heat. This research, which achieves extraordinary bacterial eradication through the synergistic effect of microwave thermal therapy (MWTT) and microwave dynamic therapy (MDT), presents a novel strategy for treating deep‐tissue bacterial infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI