清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Automated Decision Support System to Analyze Malignancy Patterns of Breast Masses Employing Medically Relevant Features of Ultrasound Images

特征选择 人工智能 计算机科学 随机森林 模式识别(心理学) 分类器(UML) 特征(语言学) 支持向量机 超声波 决策树 排名(信息检索) 乳腺癌 机器学习 放射科 医学 癌症 内科学 哲学 语言学
作者
Sami Azam,Sidratul Montaha,Mohaimenul Azam Khan Raiaan,A. K. M. Rakibul Haque Rafid,Md. Saddam Hossain Mukta,Mirjam Jonkman
标识
DOI:10.1007/s10278-023-00925-7
摘要

An automated computer-aided approach might aid radiologists in diagnosing breast cancer at a primary stage. This study proposes a novel decision support system to classify breast tumors into benign and malignant based on clinically important features, using ultrasound images. Nine handcrafted features, which align with the clinical markers used by radiologists, are extracted from the region of interest (ROI) of ultrasound images. To validate that these elected clinical markers have a significant impact on predicting the benign and malignant classes, ten machine learning (ML) models are experimented with resulting in test accuracies in the range of 96 to 99%. In addition, four feature selection techniques are explored where two features are eliminated according to the feature ranking score of each feature selection method. The Random Forest classifier is trained with the resultant four feature sets. Results indicate that even when eliminating only two features, the performance of the model is reduced for each feature selection technique. These experiments validate the efficiency and effectiveness of the clinically important features. To develop the decision support system, a probability density function (PDF) graph is generated for each feature in order to find a threshold range to distinguish benign and malignant tumors. Based on the threshold range of particular features, a decision support system is developed in such a way that if at least eight out of nine features are within the threshold range, the image will be denoted as true predicted. With this algorithm, a test accuracy of 99.38% and an F1 Score of 99.05% is achieved, which means that our decision support system outperforms all the previously trained ML models. Moreover, after calculating individual class-based test accuracies, for the benign class, a test accuracy of 99.31% has been attained where only three benign instances are misclassified out of 437 instances, and for the malignant class, a test accuracy of 99.52% has been attained where only one malignant instance is misclassified out of 210 instances. This system is robust, time-effective, and reliable as the radiologists' criteria are followed and may aid specialists in making a diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亿亿亿亿发布了新的文献求助10
9秒前
20秒前
20秒前
JA发布了新的文献求助10
24秒前
亿亿亿亿发布了新的文献求助10
24秒前
柒八染完成签到 ,获得积分10
26秒前
Sandy应助科研通管家采纳,获得80
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
33秒前
雪山飞龙发布了新的文献求助10
42秒前
研友_GZ3zRn完成签到 ,获得积分0
45秒前
赘婿应助P1gy采纳,获得100
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
徐团伟完成签到 ,获得积分10
1分钟前
1分钟前
奔跑的小熊完成签到 ,获得积分10
1分钟前
puhong zhang完成签到,获得积分10
1分钟前
2分钟前
vvvaee完成签到 ,获得积分10
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
梨子茶发布了新的文献求助30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
雪山飞龙完成签到,获得积分10
2分钟前
2分钟前
俭朴的慕山完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
WenJun完成签到,获得积分10
2分钟前
Perry完成签到,获得积分10
3分钟前
nuliguan完成签到 ,获得积分10
3分钟前
完美世界应助李小猫采纳,获得10
3分钟前
3分钟前
李小猫完成签到,获得积分10
3分钟前
李小猫发布了新的文献求助10
3分钟前
丘比特应助精明晓刚采纳,获得10
3分钟前
3分钟前
3分钟前
fan发布了新的文献求助10
4分钟前
精明晓刚发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128805
捐赠科研通 3238345
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069