An Estimation of the Leaf Nitrogen Content of Apple Tree Canopies Based on Multispectral Unmanned Aerial Vehicle Imagery and Machine Learning Methods

多光谱图像 遥感 天蓬 环境科学 树(集合论) 氮气 人工智能 计算机科学 植物 数学 生物 地理 化学 数学分析 有机化学
作者
Xiaonan Zhao,Zhenyuan Zhao,Fengnian Zhao,Jiangfan Liu,Zhaoyang Li,Xingpeng Wang,Yang Gao
出处
期刊:Agronomy [MDPI AG]
卷期号:14 (3): 552-552
标识
DOI:10.3390/agronomy14030552
摘要

Accurate nitrogen fertilizer management determines the yield and quality of fruit trees, but there is a lack of multispectral UAV-based nitrogen fertilizer monitoring technology for orchards. Therefore, in this study, a field experiment was conducted by UAV to acquire multispectral images of an apple orchard with dwarf stocks and dense planting in southern Xinjiang and to estimate the nitrogen content of canopy leaves of apple trees by using three machine learning methods. The three inversion methods were partial least squares regression (PLSR), ridge regression (RR), and random forest regression (RFR). The results showed that the RF model could significantly improve the accuracy of estimating the leaf nitrogen content of the apple tree canopy, and the validation set of the four periods of apple trees ranged from 0.670 to 0.797 for R2, 0.838 mg L−1 to 4.403 mg L−1 for RMSE, and 1.74 to 2.222 for RPD, among which the RF model of the pre-fruit expansion stage of the 2023 season had the highest accuracy. This paper shows that the apple tree leaf nitrogen content estimation model based on multispectral UAV images constructed by using the RF machine learning method can timely and accurately diagnose the growth condition of apple trees, provide technical support for precise nitrogen fertilizer management in orchards, and provide a certain scientific basis for tree crop growth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷心菜完成签到,获得积分10
刚刚
丝丢皮的发布了新的文献求助30
1秒前
1秒前
1秒前
慕容飞凤发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
伯赏汝燕发布了新的文献求助10
2秒前
3秒前
DEYING完成签到,获得积分20
3秒前
3秒前
3秒前
陶醉的翠霜完成签到 ,获得积分10
4秒前
4秒前
4秒前
舒心数据线完成签到,获得积分10
5秒前
5秒前
5秒前
信仰完成签到,获得积分10
5秒前
小蘑菇应助田明月采纳,获得10
5秒前
7秒前
7秒前
8秒前
呱呱发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
大饼卷肉发布了新的文献求助10
8秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167994
求助须知:如何正确求助?哪些是违规求助? 2819430
关于积分的说明 7926432
捐赠科研通 2479299
什么是DOI,文献DOI怎么找? 1320689
科研通“疑难数据库(出版商)”最低求助积分说明 632891
版权声明 602443