NeRF-IS: Explicit Neural Radiance Fields in Semantic Space

计算机科学 渲染(计算机图形) 光辉 人工智能 人工神经网络 可解释性 可扩展性 计算机视觉 遥感 数据库 地质学
作者
Jiansong Sha,Haoyu Zhang,Yuchen Pan,Guang Kou,X. Yi
标识
DOI:10.1145/3595916.3626379
摘要

Implicit Neural Radiance Field (NeRF) techniques have been widely applied and shown promising results for scene decomposition learning and rendering. Existing methods typically require encoding spatial and semantic coordinates separately, followed by deep neural networks (MLP) to obtain representations of the entire scene and individual objects respectively. However, these implicit neural field methods mix scene data and differentiable rendering together, which results in issues with expensive computation, low interpretability and limited scalability. In this article, we propose NeRF-IS (Explicit Neural Radiance Fields in Semantic Space), a novel 4D neural radiance field model architecture, that integrates 3D space and semantic space modeling, which can perform both scene-level and object-level modeling. Specifically, we design a hybrid method of explicit spatial modeling and implicit feature representation, which enhances the model’s ability in scene semantic editing and realistic rendering. For efficient training of NeRF-IS, we apply low rank tensor decomposition to compress the model and speed up the training. We also introduce an importance sampling algorithm that uses a volume density prediction network to provide more accurate samples for the whole system with a coarse-to-fine strategy. Extensive experiments demonstrate that our system not only achieves competitive performance for scene-level representation and rendering of static scene, but also enables object-level rendering and editing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
司念者你发布了新的文献求助10
3秒前
3秒前
皮崇知发布了新的文献求助10
4秒前
5秒前
美好易烟发布了新的文献求助10
5秒前
浑灵安发布了新的文献求助10
6秒前
7秒前
却依然完成签到 ,获得积分20
10秒前
10秒前
Akim应助HB采纳,获得10
11秒前
叮叮当当发布了新的文献求助10
11秒前
yar应助涵泽采纳,获得10
12秒前
14秒前
科研通AI2S应助孤独箴言采纳,获得30
16秒前
17秒前
Jc发布了新的文献求助10
19秒前
852应助冬不拉的红糖纸采纳,获得10
20秒前
20秒前
21秒前
眼睛大莆完成签到,获得积分10
22秒前
ll应助Yang采纳,获得10
22秒前
童年的秋千完成签到,获得积分10
25秒前
眼睛大莆发布了新的文献求助10
26秒前
walx完成签到,获得积分10
27秒前
beifa完成签到,获得积分20
27秒前
Jamin完成签到,获得积分10
28秒前
srf0602.发布了新的文献求助10
28秒前
积极代芙完成签到,获得积分10
29秒前
上官若男应助天真的香寒采纳,获得10
30秒前
怀石逾沙完成签到,获得积分10
30秒前
LVVVB完成签到,获得积分10
32秒前
33秒前
轩轩发布了新的文献求助10
36秒前
36秒前
36秒前
mizhou完成签到,获得积分20
37秒前
Zhangll完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450