Robust Tracking via Unifying Pretrain-Finetuning and Visual Prompt Tuning

计算机科学 人工智能 稳健性(进化) BitTorrent跟踪器 机器学习 任务(项目管理) 眼动 领域知识 生物化学 化学 管理 经济 基因
作者
Guangtong Zhang,Qihua Liang,Ning Li,Zhiyi Mo,Bineng Zhong
标识
DOI:10.1145/3595916.3626410
摘要

The finetuning paradigm has been a widely used methodology for the supervised training of top-performing trackers. However, the finetuning paradigm faces one key issue: it is unclear how best to perform the finetuning method to adapt a pretrained model to tracking tasks while alleviating the catastrophic forgetting problem. To address this problem, we propose a novel partial finetuning paradigm for visual tracking via unifying pretrain-finetuning and visual prompt tuning (named UPVPT), which can not only efficiently learn knowledge from the tracking task but also reuse the prior knowledge learned by the pre-trained model for effectively handling various challenges in tracking task. Firstly, to maintain the pre-trained prior knowledge, we design a Prompt-style method to freeze some parameters of the pretrained network. Then, to learn knowledge from the tracking task, we update the parameters of the prompt and MLP layers. As a result, we cannot only retain useful prior knowledge of the pre-trained model by freezing the backbone network but also effectively learn target domain knowledge by updating the Prompt and MLP layer. Furthermore, the proposed UPVPT can easily be embedded into existing Transformer trackers (e.g., OSTracker and SwinTracker) by adding only a small number of model parameters (less than 1% of a Backbone network). Extensive experiments on five tracking benchmarks (i.e., UAV123, GOT-10k, LaSOT, TNL2K, and TrackingNet) demonstrate that the proposed UPVPT can improve the robustness and effectiveness of the model, especially in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu完成签到,获得积分10
刚刚
香蕉觅云应助嘞是举仔采纳,获得10
刚刚
2秒前
木子木子吱吱完成签到,获得积分10
2秒前
susu发布了新的文献求助30
3秒前
蔡忠英发布了新的文献求助10
4秒前
迷路访云完成签到,获得积分10
4秒前
5秒前
6秒前
BetterH完成签到 ,获得积分10
6秒前
无花果应助wow采纳,获得10
6秒前
wanci应助7iy采纳,获得10
7秒前
loong发布了新的文献求助10
11秒前
深情安青应助白桦林泪采纳,获得10
11秒前
13秒前
米米米完成签到 ,获得积分10
15秒前
JX完成签到 ,获得积分10
16秒前
17秒前
17秒前
锅包肉完成签到 ,获得积分10
17秒前
华仔应助loong采纳,获得10
18秒前
wow发布了新的文献求助10
19秒前
包容的鞋垫完成签到,获得积分10
20秒前
bkagyin应助congenialboy采纳,获得10
20秒前
搜集达人应助刘林美采纳,获得10
21秒前
张瑞雪完成签到 ,获得积分10
21秒前
hanshu发布了新的文献求助10
22秒前
24秒前
wow完成签到,获得积分10
25秒前
26秒前
牢孙完成签到,获得积分10
29秒前
嘞是举仔发布了新的文献求助10
30秒前
蔡忠英完成签到,获得积分10
31秒前
酷波er应助风车采纳,获得10
31秒前
CipherSage应助壹介草莽采纳,获得10
34秒前
PSQ完成签到,获得积分10
35秒前
35秒前
35秒前
36秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176