Robust Tracking via Unifying Pretrain-Finetuning and Visual Prompt Tuning

计算机科学 人工智能 稳健性(进化) BitTorrent跟踪器 机器学习 任务(项目管理) 眼动 领域知识 生物化学 基因 经济 化学 管理
作者
Guangtong Zhang,Qihua Liang,Ning Li,Zhiyi Mo,Bineng Zhong
标识
DOI:10.1145/3595916.3626410
摘要

The finetuning paradigm has been a widely used methodology for the supervised training of top-performing trackers. However, the finetuning paradigm faces one key issue: it is unclear how best to perform the finetuning method to adapt a pretrained model to tracking tasks while alleviating the catastrophic forgetting problem. To address this problem, we propose a novel partial finetuning paradigm for visual tracking via unifying pretrain-finetuning and visual prompt tuning (named UPVPT), which can not only efficiently learn knowledge from the tracking task but also reuse the prior knowledge learned by the pre-trained model for effectively handling various challenges in tracking task. Firstly, to maintain the pre-trained prior knowledge, we design a Prompt-style method to freeze some parameters of the pretrained network. Then, to learn knowledge from the tracking task, we update the parameters of the prompt and MLP layers. As a result, we cannot only retain useful prior knowledge of the pre-trained model by freezing the backbone network but also effectively learn target domain knowledge by updating the Prompt and MLP layer. Furthermore, the proposed UPVPT can easily be embedded into existing Transformer trackers (e.g., OSTracker and SwinTracker) by adding only a small number of model parameters (less than 1% of a Backbone network). Extensive experiments on five tracking benchmarks (i.e., UAV123, GOT-10k, LaSOT, TNL2K, and TrackingNet) demonstrate that the proposed UPVPT can improve the robustness and effectiveness of the model, especially in complex scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助大胆的觅松采纳,获得10
1秒前
友好的亦巧完成签到,获得积分10
1秒前
can发布了新的文献求助10
2秒前
香蕉不呐呐完成签到,获得积分10
2秒前
Anna完成签到,获得积分10
2秒前
搜集达人应助ALITTLE采纳,获得10
3秒前
Yada发布了新的文献求助10
3秒前
科研通AI2S应助wuya采纳,获得10
3秒前
3秒前
6秒前
李爱国应助原子采纳,获得10
7秒前
8秒前
标致的夏天完成签到 ,获得积分20
8秒前
香蕉梨愁完成签到,获得积分10
9秒前
天天快乐应助骆風采纳,获得10
9秒前
10秒前
Mr发布了新的文献求助10
10秒前
11秒前
周灏烜完成签到,获得积分10
11秒前
12秒前
大圣发布了新的文献求助10
16秒前
千xi发布了新的文献求助30
16秒前
17秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
乐空思应助ernest采纳,获得10
19秒前
阿巴阿巴完成签到 ,获得积分20
20秒前
20秒前
复杂的凌柏完成签到 ,获得积分10
20秒前
干净的沛蓝完成签到,获得积分10
21秒前
21秒前
23秒前
wuya发布了新的文献求助10
23秒前
阿千完成签到,获得积分10
23秒前
骆風发布了新的文献求助10
24秒前
12138发布了新的文献求助10
24秒前
24秒前
lhnsisi完成签到,获得积分10
25秒前
schuang完成签到,获得积分0
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851