已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study

医学 逻辑回归 回顾性队列研究 接收机工作特性 急性肾损伤 梯度升压 队列 随机森林 Boosting(机器学习) 肌酐 外科 机器学习 内科学 计算机科学
作者
Rao Sun,Shiyong Li,Yuna Wei,Hu Liu,Qiaoqiao Xu,Gaofeng Zhan,Yan Xu,Yuqin He,Yao Wang,Xinhua Li,Ailin Luo,Zhiqiang Zhou
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (5): 2950-2962 被引量:2
标识
DOI:10.1097/js9.0000000000001237
摘要

Background: Early identification of patients at high-risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery using machine learning algorithms. The authors also evaluated the predictive performance of models that included only preoperative variables or only important predictors. Materials and methods: Adult patients undergoing noncardiac surgery were retrospectively included in the study (76 457 patients in the discovery cohort and 11 910 patients in the validation cohort). AKI was determined using the KDIGO criteria. The prediction model was developed using 87 variables (56 preoperative variables and 31 intraoperative variables). A variety of machine learning algorithms were employed to develop the model, including logistic regression, random forest, extreme gradient boosting, and gradient boosting decision trees. The performance of different models was compared using the area under the receiver operating characteristic curve (AUROC). Shapley Additive Explanations (SHAP) analysis was employed for model interpretation. Results: The patients in the discovery cohort had a median age of 52 years (IQR: 42–61 years), and 1179 patients (1.5%) developed AKI after surgery. The gradient boosting decision trees algorithm showed the best predictive performance using all available variables, or only preoperative variables. The AUROCs were 0.849 (95% CI: 0.835–0.863) and 0.828 (95% CI: 0.813–0.843), respectively. The SHAP analysis showed that age, surgical duration, preoperative serum creatinine, and gamma-glutamyltransferase, as well as American Society of Anesthesiologists physical status III were the most important five features. When gradually reducing the features, the AUROCs decreased from 0.852 (including the top 40 features) to 0.839 (including the top 10 features). In the validation cohort, the authors observed a similar pattern regarding the models’ predictive performance. Conclusions: The machine learning models the authors developed had satisfactory predictive performance for identifying high-risk postoperative AKI patients. Furthermore, the authors found that model performance was only slightly affected when only preoperative variables or only the most important predictive features were included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西吴完成签到 ,获得积分10
1秒前
leungya完成签到,获得积分10
5秒前
雪梅发布了新的文献求助10
5秒前
struggling2026完成签到 ,获得积分10
7秒前
11完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
Derek完成签到,获得积分0
20秒前
包容绿海关注了科研通微信公众号
25秒前
情怀应助爱读书的嘟嘟采纳,获得10
25秒前
虚心傲丝发布了新的文献求助30
25秒前
就看最后一篇完成签到 ,获得积分10
27秒前
熊一只完成签到,获得积分10
27秒前
xxx完成签到 ,获得积分10
27秒前
熊一只发布了新的文献求助10
30秒前
jesusmanu完成签到,获得积分0
31秒前
爱读书的嘟嘟完成签到 ,获得积分10
37秒前
结实的涵柏完成签到 ,获得积分10
40秒前
42秒前
42秒前
嘎嘎的鸡神完成签到,获得积分10
45秒前
小明发布了新的文献求助30
45秒前
扬大小汤完成签到,获得积分10
48秒前
51秒前
kohu完成签到,获得积分10
58秒前
诉与山风听完成签到,获得积分10
1分钟前
sober完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lby完成签到 ,获得积分10
1分钟前
快乐的睫毛完成签到 ,获得积分10
1分钟前
Orange应助诉与山风听采纳,获得10
1分钟前
旅行的邱邱子完成签到,获得积分10
1分钟前
谦让冰真发布了新的文献求助10
1分钟前
1分钟前
CodeCraft应助总是学不会采纳,获得20
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162246
求助须知:如何正确求助?哪些是违规求助? 2813263
关于积分的说明 7899489
捐赠科研通 2472504
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142