Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study

医学 逻辑回归 回顾性队列研究 接收机工作特性 急性肾损伤 梯度升压 队列 随机森林 Boosting(机器学习) 肌酐 外科 机器学习 内科学 计算机科学
作者
Rao Sun,Shiyong Li,Yuna Wei,Hu Liu,Qiaoqiao Xu,Gaofeng Zhan,Yan Xu,Yuqin He,Yao Wang,Xinhua Li,Ailin Luo,Zhiqiang Zhou
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (5): 2950-2962 被引量:2
标识
DOI:10.1097/js9.0000000000001237
摘要

Background: Early identification of patients at high-risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery using machine learning algorithms. The authors also evaluated the predictive performance of models that included only preoperative variables or only important predictors. Materials and methods: Adult patients undergoing noncardiac surgery were retrospectively included in the study (76 457 patients in the discovery cohort and 11 910 patients in the validation cohort). AKI was determined using the KDIGO criteria. The prediction model was developed using 87 variables (56 preoperative variables and 31 intraoperative variables). A variety of machine learning algorithms were employed to develop the model, including logistic regression, random forest, extreme gradient boosting, and gradient boosting decision trees. The performance of different models was compared using the area under the receiver operating characteristic curve (AUROC). Shapley Additive Explanations (SHAP) analysis was employed for model interpretation. Results: The patients in the discovery cohort had a median age of 52 years (IQR: 42–61 years), and 1179 patients (1.5%) developed AKI after surgery. The gradient boosting decision trees algorithm showed the best predictive performance using all available variables, or only preoperative variables. The AUROCs were 0.849 (95% CI: 0.835–0.863) and 0.828 (95% CI: 0.813–0.843), respectively. The SHAP analysis showed that age, surgical duration, preoperative serum creatinine, and gamma-glutamyltransferase, as well as American Society of Anesthesiologists physical status III were the most important five features. When gradually reducing the features, the AUROCs decreased from 0.852 (including the top 40 features) to 0.839 (including the top 10 features). In the validation cohort, the authors observed a similar pattern regarding the models’ predictive performance. Conclusions: The machine learning models the authors developed had satisfactory predictive performance for identifying high-risk postoperative AKI patients. Furthermore, the authors found that model performance was only slightly affected when only preoperative variables or only the most important predictive features were included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kyle完成签到,获得积分10
2秒前
感性的凉面完成签到,获得积分20
2秒前
2秒前
请叫我风吹麦浪应助末岛采纳,获得10
3秒前
Aprial发布了新的文献求助30
3秒前
dd发布了新的文献求助10
3秒前
传奇3应助科研小菜鸟采纳,获得10
3秒前
在水一方应助惠惠采纳,获得10
4秒前
5秒前
冷艳贵公子王少完成签到 ,获得积分10
5秒前
KatzeBaliey完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
zz发布了新的文献求助10
6秒前
6秒前
Twikky发布了新的文献求助10
7秒前
7秒前
小马甲应助芒果采纳,获得10
8秒前
8秒前
心想事成完成签到,获得积分10
10秒前
隐形曼青应助噔噔噔噔采纳,获得10
10秒前
wei发布了新的文献求助10
10秒前
Nature完成签到,获得积分10
10秒前
樱桃苏打水完成签到,获得积分10
11秒前
zhui发布了新的文献求助10
11秒前
金色热浪发布了新的文献求助10
11秒前
pinging应助讲你ing采纳,获得10
13秒前
小九完成签到 ,获得积分10
14秒前
华仔应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
ivy应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
喵酱完成签到,获得积分10
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
敬老院N号应助科研通管家采纳,获得30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794