Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study

医学 逻辑回归 回顾性队列研究 接收机工作特性 急性肾损伤 梯度升压 队列 随机森林 Boosting(机器学习) 肌酐 外科 机器学习 内科学 计算机科学
作者
Rao Sun,Shiyong Li,Yuna Wei,Hu Liu,Qiaoqiao Xu,Gaofeng Zhan,Yan Xu,Yuqin He,Yao Wang,Xinhua Li,Ailin Luo,Zhiqiang Zhou
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:3
标识
DOI:10.1097/js9.0000000000001237
摘要

Background: Early identification of patients at high risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery using machine learning algorithms. We also evaluated the predictive performance of models that included only preoperative variables or only important predictors. Materials and methods: Adult patients undergoing noncardiac surgery were retrospectively included in the study (76,457 patients in the discovery cohort and 11,910 patients in the validation cohort). AKI was determined using the KDIGO criteria. The prediction model was developed using 87 variables (56 preoperative variables and 31 intraoperative variables). A variety of machine learning algorithms were employed to develop the model, including logistic regression, random forest, extreme gradient boosting, and gradient boosting decision trees (GBDT). The performance of different models was compared using the area under the receiver operating characteristic curve (AUROC). Shapley Additive Explanations (SHAP) analysis was employed for model interpretation. Results: The patients in the discovery cohort had a median age of 52 years (IQR: 42-61 y), and 1179 patients (1.5%) developed AKI after surgery. The GBDT algorithm showed the best predictive performance using all available variables, or only preoperative variables. The AUROCs were 0.849 (95% CI, 0.835-0.863) and 0.828 (95% CI, 0.813-0.843), respectively. The SHAP analysis showed that age, surgical duration, preoperative serum creatinine and gamma-glutamyltransferase, as well as American Society of Anesthesiologists physical status III were the most important five features. When gradually reducing the features, the AUROCs decreased from 0.852 (including the top 40 features) to 0.839 (including the top 10 features). In the validation cohort, we observed a similar pattern regarding the models’ predictive performance. Conclusions: The machine learning models we developed had satisfactory predictive performance for identifying high-risk postoperative AKI patients. Further, we found that model performance was only slightly affected when only preoperative variables or only the most important predictive features were included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康达完成签到,获得积分10
刚刚
刚刚
SYLH应助ZHANES采纳,获得10
刚刚
1秒前
愉快秀发布了新的文献求助10
1秒前
烟雨江南完成签到,获得积分10
2秒前
香蕉易形发布了新的文献求助10
2秒前
科研通AI2S应助愉快新筠采纳,获得10
2秒前
宇宙中心完成签到,获得积分10
2秒前
科目三应助鱼2333采纳,获得30
3秒前
3秒前
lily完成签到,获得积分20
4秒前
bkagyin应助zzz采纳,获得10
4秒前
科目三应助nzxnzx采纳,获得10
4秒前
Hoper完成签到,获得积分10
4秒前
洁净的向南完成签到 ,获得积分10
4秒前
4秒前
粗暴的小馒头完成签到,获得积分10
4秒前
5秒前
易安发布了新的文献求助30
6秒前
hmx发布了新的文献求助10
6秒前
SYLH应助Clown采纳,获得10
6秒前
7秒前
星辰大海应助yyy采纳,获得10
8秒前
SYLH应助王不王采纳,获得10
8秒前
star009完成签到,获得积分10
8秒前
8秒前
雅丽发布了新的文献求助10
9秒前
9秒前
Owen应助调皮铸海采纳,获得10
9秒前
10秒前
特梅头完成签到,获得积分20
10秒前
10秒前
victorchen完成签到,获得积分10
11秒前
开心超人发布了新的文献求助10
11秒前
搜集达人应助666采纳,获得10
12秒前
12秒前
周雅彬完成签到,获得积分20
12秒前
脑洞疼应助Yy采纳,获得10
12秒前
研友_VZG7GZ应助典雅的俊驰采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650