Asymmetric SO3CF3−‐Grafted Boron‐Center Anion Enables Boron‐Containing Interphase for High‐Performance Rechargeable Mg Batteries

材料科学 法拉第效率 电解质 电化学 无机化学 乙醚 化学 有机化学 电极 物理化学
作者
Xueting Huang,Shuangshuang Tan,Jinlong Chen,Ziwei Que,Rongrui Deng,Juncai Long,Fangyu Xiong,Guangsheng Huang,Xiaoyuan Zhou,Lingjie Li,Jingfeng Wang,Liqiang Mai,Fusheng Pan
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (17) 被引量:5
标识
DOI:10.1002/adfm.202314146
摘要

Advanced Functional MaterialsEarly View 2314146 Research Article Asymmetric SO3CF3−-Grafted Boron-Center Anion Enables Boron-Containing Interphase for High-Performance Rechargeable Mg Batteries Xueting Huang, Xueting Huang College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorShuangshuang Tan, Corresponding Author Shuangshuang Tan [email protected] College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorJinlong Chen, Jinlong Chen National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000 P. R. ChinaSearch for more papers by this authorZiwei Que, Ziwei Que National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorRongrui Deng, Rongrui Deng College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorJuncai Long, Juncai Long State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. ChinaSearch for more papers by this authorFangyu Xiong, Fangyu Xiong College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorGuangsheng Huang, Guangsheng Huang College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorXiaoyuan Zhou, Xiaoyuan Zhou National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorLingjie Li, Corresponding Author Lingjie Li [email protected] National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorJingfeng Wang, Jingfeng Wang College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorLiqiang Mai, Corresponding Author Liqiang Mai [email protected] orcid.org/0000-0003-4259-7725 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorFusheng Pan, Fusheng Pan College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this author Xueting Huang, Xueting Huang College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorShuangshuang Tan, Corresponding Author Shuangshuang Tan [email protected] College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorJinlong Chen, Jinlong Chen National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000 P. R. ChinaSearch for more papers by this authorZiwei Que, Ziwei Que National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorRongrui Deng, Rongrui Deng College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorJuncai Long, Juncai Long State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. ChinaSearch for more papers by this authorFangyu Xiong, Fangyu Xiong College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorGuangsheng Huang, Guangsheng Huang College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorXiaoyuan Zhou, Xiaoyuan Zhou National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorLingjie Li, Corresponding Author Lingjie Li [email protected] National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. China School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorJingfeng Wang, Jingfeng Wang College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this authorLiqiang Mai, Corresponding Author Liqiang Mai [email protected] orcid.org/0000-0003-4259-7725 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorFusheng Pan, Fusheng Pan College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 P. R. ChinaSearch for more papers by this author First published: 04 January 2024 https://doi.org/10.1002/adfm.202314146Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Mg(SO3CF3)2 (Mg(OTf)2) is a simple and cost-effective magnesium salt, which can promote the future applications of rechargeable magnesium batteries (RMBs). However, the simple Mg(OTf)2/ether electrolytes suffer from poor electrochemical properties due to the low solubility of Mg(OTf)2 and the serious decomposition passivation of the [Mg2+-OTf−] ion pair on Mg. Herein, the OTf− anion is successfully grafted on low-cost fluoride boronic esters (B(OCxHyF2x-y+1)3) to obtain the asymmetric and weak-coordination boron-center [B(OCxHyF2x-y+1)3OTf]− anion in ether electrolytes. The -OCH2CF3 (TFE) groups in B(TFE)3 effectively realize the charge delocalization of the OTf− and B-O plane, restraining the independent decomposition of the [Mg2+-OTf−] ion pair. The co-decomposition of the asymmetric [B(TFE)3OTf]− induces the formation of the B-containing organic/inorganic interphase, thus achieving a reversible Mg plating/stripping. After the further solubilization reaction, the obtained electrolyte exhibits a high average coulombic efficiency of 98.13% and long-term cycling stability (1000 h). Notably, the long cycling life (capacity retention of 90.2% after 600 cycles at 1 C) and high-rate capacity (43.0 mAh g−1 at 5 C) of the Mg/Mo6S8 full cell demonstrate a favorable electrolyte/cathode compatibility. This work brings new insights to design the new-type and low-cost Mg-salts and high-performance electrolytes for commercial RMBs. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description adfm202314146-sup-0001-SuppMat.pdf21.1 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1M. Mao, T. Gao, S. Hou, C. Wang, Chem. Soc. Rev. 2018, 47, 8804. 10.1039/C8CS00319J CASPubMedWeb of Science®Google Scholar 2R. Deivanayagam, B. J. Ingram, R. Shahbazian-Yassar, Energy Storage Mater. 2019, 21, 136. 10.1016/j.ensm.2019.05.028 Web of Science®Google Scholar 3R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Joule 2019, 3, 27. 10.1016/j.joule.2018.10.028 CASWeb of Science®Google Scholar 4J. Tian, X. Zhou, Q. Wu, C. Li, Energy Storage Mater. 2019, 22, 218. 10.1016/j.ensm.2019.01.019 Web of Science®Google Scholar 5H. Shuai, J. Xu, K. Huang, Coord. Chem. Rev. 2020, 422, 213478. 10.1016/j.ccr.2020.213478 CASWeb of Science®Google Scholar 6M. Li, J. Lu, X. Ji, Y. Li, Y. Shao, Z. Chen, C. Zhong, K. Amine, Nat. Rev. Mater. 2020, 5, 276. 10.1038/s41578-019-0166-4 CASWeb of Science®Google Scholar 7H. Tang, C. Zuo, F. Xiong, C. Pei, S. Tan, P. Luo, W. Yang, Q. An, L. Mai, Sci. China Mater. 2022, 65, 2197. 10.1007/s40843-021-2000-y CASWeb of Science®Google Scholar 8F. Xiong, Y. Jiang, L. Cheng, R. Yu, S. Tan, C. Tang, C. Zuo, Q. An, Y. Zhao, J.-J. Gaumet, L. Mai, Interdiscip. Mater. 2022, 1, 140. 10.1002/idm2.12004 Google Scholar 9X.-T. Wang, Z.-Y. Gu, E. H. Ang, X.-X. Zhao, X.-L. Wu, Y. Liu, Interdiscip. Mater. 2022, 1, 417. 10.1002/idm2.12041 Google Scholar 10M. Matsui, J. Power Sources 2011, 196, 7048. 10.1016/j.jpowsour.2010.11.141 CASWeb of Science®Google Scholar 11T. T. Tran, W. M. Lamanna, M. N. Obrovac, J. Electrochem. Soc. 2012, 159, A2005. 10.1149/2.012301jes CASWeb of Science®Google Scholar 12I. Shterenberg, M. Salama, H. D. Yoo, Y. Gofer, J.-B. Park, Y.-K. Sun, D. Aurbach, J. Electrochem. Soc. 2015, 162, A7118. 10.1149/2.0161513jes CASWeb of Science®Google Scholar 13S. Tepavcevic, J. G. Connell, P. P. Lopes, M. Bachhav, B. Key, C. Valero-Vidal, E. J. Crumlin, V. R. Stamenkovic, N. M. Markovic, Nano Energy 2018, 53, 449. 10.1016/j.nanoen.2018.09.005 CASWeb of Science®Google Scholar 14Q. Fu, A. Sarapulova, V. Trouillet, L. Zhu, F. Fauth, S. Mangold, E. Welter, S. Indris, M. Knapp, S. Dsoke, N. Bramnik, H. Ehrenberg, J. Am. Chem. Soc. 2019, 141, 2305. 10.1021/jacs.8b08998 CASPubMedWeb of Science®Google Scholar 15F. Liu, G. Cao, J. Ban, H. Lei, Y. Zhang, G. Shao, A. Zhou, L. Z. Fan, J. Hu, J. Magnesium Alloys 2022, 10, 2699. 10.1016/j.jma.2022.09.004 CASWeb of Science®Google Scholar 16Z. Li, T. Diemant, Z. Meng, Y. Xiu, A. Reupert, L. Wang, M. Fichtner, Z. Zhao-Karger, ACS Appl. Mater. Interfaces 2021, 13, 33123. 10.1021/acsami.1c08476 CASPubMedWeb of Science®Google Scholar 17D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724. 10.1038/35037553 CASPubMedWeb of Science®Google Scholar 18Y. Guo, F. Zhang, J. Yang, F. Wang, Y. Nuli, S. Hirano, Energy Environ. Sci. 2012, 5, 9100. 10.1039/c2ee22509c CASWeb of Science®Google Scholar 19J. Muldoon, C. B. Bucur, A. G. Oliver, J. Zajicek, G. D. Allred, W. C. Boggess, Energy Environ. Sci. 2013, 6, 482. 10.1039/C2EE23686A CASWeb of Science®Google Scholar 20J. H. Ha, J.-H. Cho, J. H. Kim, B. W. Cho, S. H. Oh, J. Power Sources 2017, 355, 90. 10.1016/j.jpowsour.2017.04.041 CASWeb of Science®Google Scholar 21Z. Yao, Y. Yu, Q. Wu, M. Cui, X. Zhou, J. Liu, C. Li, Small 2021, 17, 2102168. 10.1002/smll.202102168 CASWeb of Science®Google Scholar 22S. Chakrabarty, Y. Glagovsky, A. Maddegalla, N. Fridman, D. Bravo-Zhivotovski, D. Aurbach, A. Mukherjee, M. Noked, Electrochim. Acta 2023, 454, 142413. 10.1016/j.electacta.2023.142413 CASGoogle Scholar 23Y. Li, S. Guan, H. Huo, Y. Ma, Y. Gao, P. Zuo, G. Yin, Adv. Funct. Mater. 2021, 31, 2100650. 10.1002/adfm.202100650 CASWeb of Science®Google Scholar 24A. Du, Z. Zhang, H. Qu, Z. Cui, L. Qiao, L. Wang, J. Chai, T. Lu, S. Dong, T. Dong, H. Xu, X. Zhou, G. Cui, Energy Environ. Sci. 2017, 10, 2616. 10.1039/C7EE02304A CASWeb of Science®Google Scholar 25Z. Zhao-Karger, M. E. Gil Bardaji, O. Fuhr, M. Fichtner, J. Mater. Chem. A 2017, 5, 10815. 10.1039/C7TA02237A CASWeb of Science®Google Scholar 26J. Luo, Y. Bi, L. Zhang, X. Zhang, T. L. Liu, Angew. Chem., Int. Ed. 2019, 58, 6967. 10.1002/anie.201902009 CASPubMedWeb of Science®Google Scholar 27T. Mandai, ACS Appl. Mater. Interfaces 2020, 12, 39135. 10.1021/acsami.0c09948 CASPubMedWeb of Science®Google Scholar 28W. Ren, D. Wu, Y. Nuli, D. Zhang, Y. Yang, Y. Wang, J. Yang, J. Wang, ACS Energy Lett. 2021, 6, 3212. 10.1021/acsenergylett.1c01411 CASWeb of Science®Google Scholar 29S.-J. Kang, H. Kim, S. Hwang, M. Jo, M. Jang, C. Park, S.-T. Hong, H. Lee, ACS Appl. Mater. Interfaces 2019, 11, 517. 10.1021/acsami.8b13588 CASPubMedWeb of Science®Google Scholar 30J. Zhang, J. Liu, M. Wang, Z. Zhang, Z. Zhou, X. Chen, A. Du, S. Dong, Z. Li, G. Li, G. Cui, Energy Environ. Sci. 2023, 16, 1111. 10.1039/D2EE03270H CASWeb of Science®Google Scholar 31A.-R. Jeon, S. Jeon, G. Lim, J. Jang, W. J. No, S. H. Oh, J. Hong, S.-H. Yu, M. Lee, ACS Nano 2023, 17, 8980. 10.1021/acsnano.2c08672 CASPubMedWeb of Science®Google Scholar 32Y. Liu, W. Zhao, Z. Pan, Z. Fan, M. Zhang, X. Zhao, J. Chen, X. Yang, Angew. Chem., Int. Ed. 2023, 62, e202302617. 10.1002/anie.202302617 CASPubMedGoogle Scholar 33S. Zhang, Y. Wang, Y. Sun, Y. Wang, Y. Yang, P. Zhang, X. Lv, J. Wang, H. Zhu, Y. Nuli, Small 2023, 19, 2300148. 10.1002/smll.202300148 CASWeb of Science®Google Scholar 34Y. Yang, W. Wang, Y. Nuli, J. Yang, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 9062. 10.1021/acsami.8b20180 CASPubMedWeb of Science®Google Scholar 35D.-T. Nguyen, A. Y. S. Eng, R. Horia, Z. Sofer, A. D. Handoko, M.-F. Ng, Z. W. Seh, Energy Storage Mater. 2022, 45, 1120. 10.1016/j.ensm.2021.11.011 Web of Science®Google Scholar 36D.-T. Nguyen, A. Y. S. Eng, M.-F. Ng, V. Kumar, Z. Sofer, A. D. Handoko, G. S. Subramanian, Z. W. Seh, Cell Rep Phys Sci 2020, 1, 100265. 10.1016/j.xcrp.2020.100265 CASGoogle Scholar 37D. Zhang, S. Duan, X. Liu, Y. Yang, Y. Zhang, W. Ren, S. Zhang, M. Cheng, W. Yang, J. Wang, Y. Nuli, Nano Energy 2023, 109, 108257. 10.1016/j.nanoen.2023.108257 CASGoogle Scholar 38Y. Du, Y. Chen, S. Tan, J. Chen, X. Huang, L. Cui, J. Long, Z. Wang, X. Yao, B. Shang, G. Huang, X. Zhou, L. Li, J. Wang, F. Pan, Energy Storage Mater. 2023, 62, 102939. 10.1016/j.ensm.2023.102939 Google Scholar 39D. Zhang, Y. Wang, Y. Yang, Y. Zhang, Y. Zhao, M. Pan, Y. Sun, S. Chen, X. Liu, J. Wang, Y. Nuli, Adv. Energy Mater. 2023, 13, 2301795. 10.1002/aenm.202301795 CASGoogle Scholar 40Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526. 10.1038/s41560-020-0634-5 CASWeb of Science®Google Scholar 41S. Zhang, M. Cheng, P. Zhang, Y. Wang, D. Zhang, Y. Yang, J. Wang, Y. Nuli, Chem. Commun. 2022, 58, 11969. 10.1039/D2CC04357B CASPubMedWeb of Science®Google Scholar 42C. Chen, J. Chen, S. Tan, X. Huang, Y. Du, B. Shang, B. Qu, G. Huang, X. Zhou, J. Wang, L. Li, F. Pan, Energy Storage Mater. 2023, 59, 102792. 10.1016/j.ensm.2023.102792 Google Scholar 43Y. Liao, M. Zhou, L. Yuan, K. Huang, D. Wang, Y. Han, J. Meng, Y. Zhang, Z. Li, Y. Huang, Adv. Energy Mater. 2023, 13, 2301477. 10.1002/aenm.202301477 CASGoogle Scholar 44N. Sa, T. L. Kinnibrugh, H. Wang, G. Sai Gautam, K. W. Chapman, J. T. Vaughey, B. Key, T. T. Fister, J. W. Freeland, D. L. Proffit, P. J. Chupas, G. Ceder, J. G. Bareno, I. D. Bloom, A. K. Burrell, Chem. Mater. 2016, 28, 2962. 10.1021/acs.chemmater.6b00026 CASWeb of Science®Google Scholar 45M. Cheng, W. Ren, D. Zhang, S. Zhang, Y. Yang, X. Lv, J. Yang, J. Wang, Y. Nuli, Energy Storage Mater. 2022, 51, 764. 10.1016/j.ensm.2022.07.021 Web of Science®Google Scholar 46J. Long, Y. An, Z. Yang, G. Zhang, J. Zhang, S. Tan, Q. An, Chem. Eng. J. 2023, 461, 141901. 10.1016/j.cej.2023.141901 CASGoogle Scholar 47Y. Sun, Y. Wang, L. Jiang, D. Dong, W. Wang, J. Fan, Y.-C. Lu, Energy Environ. Sci. 2023, 16, 265. 10.1039/D2EE03235J CASWeb of Science®Google Scholar 48U. Bhattacharjee, S. Bhowmik, S. Ghosh, N. Vangapally, S. K. Martha, Chem. Eng. J. 2022, 430, 132835. 10.1016/j.cej.2021.132835 CASWeb of Science®Google Scholar 49J. Guzmán-Torres, D. L. Ochoa-Gamboa, L. L. Garza-Tovar, L. C. Torres-González, S. M. De La Parra-Arciniega, E. González-Juárez, I. Gómez, E. M. Sánchez, J. Electron. Mater. 2023, 52, 1250. 10.1007/s11664-022-10073-3 CASWeb of Science®Google Scholar 50J. H. Ha, J. Cho, J. H. Kim, B. W. Cho, H. C. Ham, S. H. Oh, J. Power Sources 2018, 398, 120. 10.1016/j.jpowsour.2018.07.058 CASWeb of Science®Google Scholar 51J. H. Ha, B. Lee, M. Lee, T. Yim, S. H. Oh, Chem. Commun. 2020, 56, 14163. 10.1039/D0CC05611A CASPubMedWeb of Science®Google Scholar 52N. N. Rajput, X. Qu, N. Sa, A. K. Burrell, K. A. Persson, J. Am. Chem. Soc. 2015, 137, 3411. 10.1021/jacs.5b01004 CASPubMedWeb of Science®Google Scholar 53S. Wang, K. Wang, Y. Zhang, Y. Jie, X. Li, Y. Pan, X. Gao, Q. Nian, R. Cao, Q. Li, S. Jiao, D. Xu, Angew. Chem., Int. Ed. 2023, 62, e202304411. 10.1002/anie.202304411 PubMedGoogle Scholar 54L. Yang, C. Yang, Y. Chen, Z. Pu, Z. Zhang, Y. Jie, X. Zheng, Y. Xiao, S. Jiao, Q. Li, D. Xu, ACS Appl. Mater. Interfaces 2021, 13, 30712. 10.1021/acsami.1c07567 CASPubMedWeb of Science®Google Scholar 55S. Hou, X. Ji, K. Gaskell, P.-F. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, Science 2021, 374, 172. 10.1126/science.abg3954 CASPubMedWeb of Science®Google Scholar 56C. Li, R. D. Guha, A. Shyamsunder, K. A. Persson, L. F. Nazar, Energy Environ. Sci. 2024, https://doi.org/10.1039/D3EE02861E. 10.1039/D3EE02861E Google Scholar 57Y. Li, X. Zhou, J. Hu, Y. Zheng, M. Huang, K. Guo, C. Li, Energy Storage Mater. 2022, 46, 1. 10.1016/j.ensm.2021.12.023 CASWeb of Science®Google Scholar 58D. Wang, X. Du, G. Chen, F. Song, J. Du, J. Zhao, Y. Ma, J. Wang, A. Du, Z. Cui, X. Zhou, G. Cui, Angew. Chem., Int. Ed. 2023, 62, e202217709. 10.1002/anie.202217709 CASPubMedWeb of Science®Google Scholar 59J. Long, S. Tan, J. Wang, F. Xiong, L. Cui, Q. An, L. Mai, Angew. Chem., Int. Ed. 2023, 62, e202301934. 10.1002/anie.202301934 CASPubMedWeb of Science®Google Scholar 60S. Huang, Z. Cui, L. Qiao, G. Xu, J. Zhang, K. Tang, X. Liu, Q. Wang, X. Zhou, B. Zhang, G. Cui, Electrochim. Acta 2019, 299, 820. 10.1016/j.electacta.2019.01.039 CASWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issue2314146 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梨儿发布了新的文献求助10
2秒前
庄庄发布了新的文献求助10
2秒前
Clearlove完成签到,获得积分10
4秒前
北斗HH完成签到,获得积分10
6秒前
6秒前
欧耶欧椰完成签到 ,获得积分10
8秒前
诩珝栩完成签到 ,获得积分10
8秒前
梨儿完成签到,获得积分10
12秒前
14秒前
从容芮应助taitai采纳,获得10
15秒前
16秒前
caimeng应助明天会更美好采纳,获得10
17秒前
qaw发布了新的文献求助10
19秒前
19秒前
周周发布了新的文献求助10
21秒前
22秒前
思源应助小杨采纳,获得10
23秒前
怡然百川完成签到 ,获得积分10
23秒前
0835发布了新的文献求助10
23秒前
25秒前
22222发布了新的文献求助20
25秒前
wei完成签到,获得积分20
28秒前
高挑的幼翠完成签到 ,获得积分10
29秒前
阔达的梨愁完成签到 ,获得积分10
30秒前
30秒前
31秒前
33秒前
33秒前
34秒前
充电宝应助科研通管家采纳,获得10
35秒前
SciGPT应助科研通管家采纳,获得10
35秒前
情怀应助科研通管家采纳,获得10
35秒前
深情安青应助科研通管家采纳,获得10
35秒前
36秒前
36秒前
传奇3应助科研通管家采纳,获得10
36秒前
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
雍傲易发布了新的文献求助20
37秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
Preparation and Characterization of Five Amino-Modified Hyper-Crosslinked Polymers and Performance Evaluation for Aged Transformer Oil Reclamation 700
Operative Techniques in Pediatric Orthopaedic Surgery 510
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2929877
求助须知:如何正确求助?哪些是违规求助? 2581287
关于积分的说明 6961571
捐赠科研通 2230090
什么是DOI,文献DOI怎么找? 1184889
版权声明 589565
科研通“疑难数据库(出版商)”最低求助积分说明 579942