Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,Hao-Bo Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (12): 884-891 被引量:2
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乱七八糟完成签到 ,获得积分20
2秒前
大江大河发布了新的文献求助10
2秒前
上官若男应助beikeyy采纳,获得30
2秒前
cj完成签到,获得积分10
2秒前
无奈应助呜啦啦啦采纳,获得10
4秒前
科研迪发布了新的文献求助10
5秒前
8秒前
沉默的含巧完成签到,获得积分10
9秒前
10秒前
畅快的眼神完成签到 ,获得积分10
10秒前
jon158完成签到,获得积分10
11秒前
隐形曼青应助科研小扒菜采纳,获得10
11秒前
12秒前
清秀问芙发布了新的文献求助10
13秒前
14秒前
江江江江关注了科研通微信公众号
15秒前
16秒前
17秒前
19秒前
19秒前
小蝶发布了新的文献求助10
19秒前
文艺的筮完成签到 ,获得积分10
20秒前
21秒前
BoBo完成签到,获得积分20
23秒前
23秒前
左丘冥发布了新的文献求助10
23秒前
慕青应助小蝶采纳,获得10
24秒前
华仔应助小蝶采纳,获得10
24秒前
kunkun发布了新的文献求助10
24秒前
25秒前
Papermuch发布了新的文献求助10
25秒前
NAOKI应助愤怒的紫采纳,获得10
26秒前
LLH完成签到,获得积分20
27秒前
浅浅发布了新的文献求助10
27秒前
Sun发布了新的文献求助10
29秒前
搞怪水绿发布了新的文献求助10
30秒前
30秒前
31秒前
冷酷的乐驹完成签到 ,获得积分10
31秒前
丘比特应助明亮无颜采纳,获得10
31秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198