Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,H.S. Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (12): 884-891 被引量:2
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ttt发布了新的文献求助30
2秒前
想毕业的第n天完成签到,获得积分10
2秒前
思源应助yqx采纳,获得10
3秒前
傲娇平蝶发布了新的文献求助10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
cc应助科研通管家采纳,获得10
4秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
cc应助科研通管家采纳,获得10
5秒前
Rdeohio完成签到,获得积分20
5秒前
Benny发布了新的文献求助10
5秒前
6秒前
lcd发布了新的文献求助10
6秒前
小沈小沈完成签到,获得积分10
8秒前
科目三应助cccccc采纳,获得10
8秒前
tt825完成签到,获得积分10
9秒前
9秒前
yqx完成签到,获得积分10
9秒前
努力看文献的小杨完成签到,获得积分10
9秒前
后会无期完成签到,获得积分10
9秒前
怡然白猫发布了新的文献求助10
9秒前
he完成签到,获得积分10
9秒前
Ava应助lcd采纳,获得10
10秒前
10秒前
鲤鱼十三完成签到,获得积分10
11秒前
黎明完成签到 ,获得积分10
12秒前
12秒前
傲娇平蝶完成签到,获得积分10
12秒前
Opse完成签到,获得积分10
12秒前
13秒前
13秒前
orixero应助KID采纳,获得10
14秒前
yesss完成签到,获得积分10
14秒前
无忧应助庾储采纳,获得10
14秒前
14秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070024
求助须知:如何正确求助?哪些是违规求助? 2724039
关于积分的说明 7483616
捐赠科研通 2371113
什么是DOI,文献DOI怎么找? 1257302
科研通“疑难数据库(出版商)”最低求助积分说明 609889
版权声明 596879