已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,Hao-Bo Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:49 (12): 884-891 被引量:5
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao完成签到 ,获得积分10
刚刚
自信松思完成签到 ,获得积分10
3秒前
WangWaud完成签到,获得积分10
3秒前
不如看海完成签到 ,获得积分10
4秒前
研友_ZzrWKZ完成签到 ,获得积分10
4秒前
wei jie完成签到 ,获得积分10
4秒前
虾虾完成签到 ,获得积分10
4秒前
scholarpei完成签到,获得积分10
4秒前
4秒前
super完成签到,获得积分10
4秒前
JamesPei应助ppok采纳,获得10
5秒前
清樾完成签到 ,获得积分10
5秒前
流苏完成签到,获得积分10
7秒前
Denmark完成签到 ,获得积分10
7秒前
张元东完成签到 ,获得积分10
7秒前
蓝色天空完成签到,获得积分10
7秒前
老狗完成签到 ,获得积分10
8秒前
鲁丁丁完成签到 ,获得积分10
9秒前
9秒前
涛老三完成签到 ,获得积分10
9秒前
如意秋珊完成签到 ,获得积分10
9秒前
时间地点条件完成签到,获得积分10
9秒前
遇上就这样吧完成签到,获得积分0
9秒前
hrs完成签到 ,获得积分10
9秒前
李姝完成签到 ,获得积分10
10秒前
ANIVIA完成签到,获得积分10
10秒前
宇称yu完成签到 ,获得积分10
11秒前
11秒前
红毛兔完成签到 ,获得积分10
11秒前
zhaolee完成签到 ,获得积分10
11秒前
tigeryao发布了新的文献求助10
11秒前
Chen完成签到 ,获得积分10
12秒前
尚可完成签到 ,获得积分10
12秒前
Benhnhk21完成签到,获得积分10
12秒前
星叶完成签到 ,获得积分10
12秒前
he完成签到 ,获得积分10
12秒前
尺子尺子和池子完成签到,获得积分10
12秒前
优雅夕阳完成签到 ,获得积分10
12秒前
酒醉的蝴蝶完成签到 ,获得积分10
13秒前
橘橘橘子皮完成签到 ,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980612
求助须知:如何正确求助?哪些是违规求助? 3524503
关于积分的说明 11221754
捐赠科研通 3261938
什么是DOI,文献DOI怎么找? 1800981
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807320

今日热心研友

酷波er
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10