Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,Hao-Bo Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (12): 884-891 被引量:5
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lbx发布了新的文献求助10
刚刚
xqwwqx发布了新的文献求助10
1秒前
1秒前
1秒前
活力的妙之完成签到 ,获得积分10
1秒前
充电宝应助坚强乌龟采纳,获得10
1秒前
xhy发布了新的文献求助10
2秒前
kingwill给zinnia的求助进行了留言
2秒前
大胆夜绿发布了新的文献求助10
2秒前
传统的凝天完成签到,获得积分10
2秒前
3秒前
尼克的朱迪完成签到,获得积分10
3秒前
3秒前
大个应助谷大喵唔采纳,获得10
3秒前
23发布了新的文献求助10
3秒前
简单的铃铛完成签到 ,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助体贴啤酒采纳,获得10
4秒前
5秒前
大模型应助Water103采纳,获得10
5秒前
6秒前
儒雅沛凝发布了新的文献求助10
6秒前
6秒前
DXXX发布了新的文献求助10
7秒前
小不溜完成签到 ,获得积分10
7秒前
王汉韬发布了新的文献求助10
7秒前
科研通AI2S应助咕噜仔采纳,获得20
7秒前
11111111完成签到,获得积分10
7秒前
NexusExplorer应助皮蛋瘦肉周采纳,获得10
7秒前
8秒前
zbearupz完成签到,获得积分10
8秒前
xiao发布了新的文献求助10
9秒前
10秒前
10秒前
conghuiqu完成签到,获得积分10
10秒前
Superman完成签到 ,获得积分10
10秒前
哈哈呀发布了新的文献求助10
10秒前
大模型应助Yuki0616采纳,获得10
10秒前
牛肉干发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672