亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,Hao-Bo Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (12): 884-891 被引量:10
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助闪闪万言采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
14秒前
26秒前
movoandy发布了新的文献求助10
31秒前
kndr10发布了新的文献求助10
32秒前
38秒前
kndr10完成签到,获得积分10
44秒前
如意葶发布了新的文献求助10
45秒前
香蕉觅云应助movoandy采纳,获得10
49秒前
53秒前
Z1发布了新的文献求助10
59秒前
Ariel完成签到 ,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
Ta沓如流星完成签到,获得积分10
1分钟前
磐xst完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助Z1采纳,获得10
1分钟前
轻松一曲发布了新的文献求助30
1分钟前
触摸涨停板完成签到 ,获得积分10
1分钟前
bb完成签到,获得积分10
1分钟前
唐唐完成签到 ,获得积分10
2分钟前
inRe发布了新的文献求助10
2分钟前
ajing完成签到,获得积分10
2分钟前
Z1完成签到,获得积分10
2分钟前
水牛完成签到,获得积分10
2分钟前
魔幻的芳完成签到,获得积分10
2分钟前
火星上的宝马完成签到,获得积分10
2分钟前
2分钟前
悲凉的忆南完成签到,获得积分10
2分钟前
迷路的台灯完成签到 ,获得积分10
2分钟前
2分钟前
陈旧完成签到,获得积分10
2分钟前
陈乔乔完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628142
求助须知:如何正确求助?哪些是违规求助? 4715835
关于积分的说明 14963746
捐赠科研通 4785838
什么是DOI,文献DOI怎么找? 2555367
邀请新用户注册赠送积分活动 1516685
关于科研通互助平台的介绍 1477226