Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,Hao-Bo Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:49 (12): 884-891 被引量:7
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜带带完成签到,获得积分10
刚刚
共享精神应助活力的夏蓉采纳,获得10
刚刚
ivvi发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
幽默的忆霜完成签到 ,获得积分10
1秒前
情怀应助misaki采纳,获得10
3秒前
Ridley应助优秀采纳,获得20
3秒前
3秒前
Lojong发布了新的文献求助10
3秒前
优优爱妈妈完成签到,获得积分10
3秒前
李冰完成签到,获得积分10
4秒前
市井小民完成签到,获得积分10
4秒前
酷波er应助jingxuan采纳,获得10
4秒前
津海007发布了新的文献求助10
4秒前
zx发布了新的文献求助10
5秒前
小屋发布了新的文献求助10
5秒前
刘立琛完成签到,获得积分10
5秒前
李健应助下雨的颜色采纳,获得10
6秒前
6秒前
ding应助三人行采纳,获得10
6秒前
科研通AI2S应助MNing采纳,获得10
6秒前
bkagyin应助hajimi采纳,获得10
7秒前
唐画完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
孙雁哝发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
zzZ完成签到,获得积分10
9秒前
Aipoi1发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
NexusExplorer应助Yan采纳,获得10
10秒前
11秒前
11秒前
Friday发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475