Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,Hao-Bo Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (12): 884-891 被引量:10
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
CJY完成签到 ,获得积分10
4秒前
棖0921发布了新的文献求助150
4秒前
JJJ完成签到,获得积分10
7秒前
10秒前
文献完成签到 ,获得积分10
13秒前
14秒前
17秒前
CJW完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
爱吃无核瓜子完成签到,获得积分10
20秒前
小贩发布了新的文献求助10
21秒前
23秒前
Rosaline完成签到 ,获得积分10
23秒前
Artist完成签到,获得积分10
24秒前
27秒前
Mercy发布了新的文献求助10
30秒前
曾经的康乃馨完成签到 ,获得积分20
31秒前
又壮了完成签到 ,获得积分10
33秒前
33秒前
LRR完成签到 ,获得积分10
36秒前
对对对完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
wyq完成签到,获得积分10
38秒前
Bismarck完成签到,获得积分20
42秒前
林林完成签到 ,获得积分10
43秒前
欢呼的雨琴完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
木卫二完成签到 ,获得积分10
53秒前
时代更迭完成签到 ,获得积分10
57秒前
57秒前
轻语完成签到 ,获得积分10
59秒前
一只橘子完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
今后应助ll采纳,获得10
1分钟前
1分钟前
1分钟前
jctyp完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ll发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432735
求助须知:如何正确求助?哪些是违规求助? 4545270
关于积分的说明 14195354
捐赠科研通 4464743
什么是DOI,文献DOI怎么找? 2447245
邀请新用户注册赠送积分活动 1438542
关于科研通互助平台的介绍 1415547