A photochromic molecular rotor based on stiff-stilbene (SSB-FMR) was handily prepared through coupled reaction, and further self-assembled with cucurbit[8]uril (CB[8]) to form a 2:2 quaternary supramolecular complex (SSB-FMR/CB[8]). Significantly, the intervention of CB[8] on SSB-FMR achieved dual functions that assembly-induced emission enhancement and assembly-induced improvement of photoisomerized performance (especially reversibility) of stiff-stilbene molecular photoswitch. The supramolecular strategy further facilitated the assembly as a photoresponsive fluorescence switch with outstanding fatigue resistance, which was expediently ap-plied in high-security-level QR code anti-counterfeiting and controllable lysosome targeted imaging. The study unprecedentedly provides a supramolecular method for highly efficiently improving photoisomerized performance especially reversibility of molecular photoswitches based on stiff-stilbene, and is of vital significance for the construction of intelligent materials with excellent capability.