Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory

山崩 样品(材料) 采样(信号处理) 比例(比率) 计算机科学 人工智能 统计 机器学习 地质学 岩土工程 地图学 数学 地理 化学 滤波器(信号处理) 色谱法 计算机视觉
作者
Faming Huang,Haowen Xiong,Shui‐Hua Jiang,Chi Yao,Xuanmei Fan,Filippo Catani,Zhilu Chang,Xiaoting Zhou,Jinsong Huang,K Y Liu
出处
期刊:Earth-Science Reviews [Elsevier]
卷期号:250: 104700-104700 被引量:75
标识
DOI:10.1016/j.earscirev.2024.104700
摘要

Fully supervised machine learning models are widely applied for landslide susceptibility prediction (LSP), mainly using landslide and non-landslide samples as output variables and related conditioning factors as input variables. However, there are many uncertain issues in LSP modelling; for example, known landslide samples may have errors, non-landslide samples randomly selected from the whole study area are not accurate, the ratio of landslide to non-landslide samples set as 1:1 is not consistent with the actual landslide distribution characteristics, it is unreasonable to assign samples labelled non-landslide a probability of 0, and it is difficult to achieve a comprehensive assessment of LSP performance. Based on a review of the literature, we innovatively propose a semi-supervised imbalanced theory to overcome these uncertain issues. First, based on landslide samples (occurrence probability assigned 1), randomly selected non-landslide samples (occurrence probability assigned 0), and slope units divided by the multi-scale segmentation method and related conditioning factors, a supervised machine learning model is constructed and used to predict the initial landslide susceptibility indexes (LSIs), which are then classified as very low, low, moderate, high and very high landslide susceptibility levels (LSLs). Second, the landslide samples with LSLs classified as very low are removed to reduce errors in landslides, and non-landslide samples are randomly selected from the low and very low LSL groups to ensure the accuracy of non-landslides. We refer to this type of sample selection as a semi-supervised learning strategy. Third, the sampling ratio of landslide to non-landslide samples is successively set to values from 1:1 to 1:200, the initial LSIs are assigned as the labels of the corresponding non-landslide samples, and the labels of landslide samples are still assigned the value 1. We call these processes as the imbalanced sampling strategy. Fourth, we use the labelled landslide and non-landslide samples to train and test the supervised machine learning again. Finally, the optimal ratio of landslide samples to non-landslide samples can be determined to obtain the final LSP results through comparisons of LSP accuracy and LSI distribution characteristics under different sampling ratios. Jiujiang City in Jiangxi Province of China is the study area. The results show that the ROC and prediction rate accuracies of semi-supervised imbalanced RF model gradually increase from 0.979 and 0.853 to 0.990 and 0.912, respectively, with the imbalanced ratios rise from 1:1 to 1:160. Then both accuracies tend to converge as the ratio rises from 160 to 200. Hence, the LSP results of the semi-supervised imbalanced theory are efficient when the ratio of landslides to non-landslides is1:160. We conclude that the proposed theory significantly improves the theoretical basis of LSP modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiayouya123发布了新的文献求助30
刚刚
刚刚
刚刚
xiaohu完成签到 ,获得积分10
1秒前
3秒前
SHIMMER完成签到,获得积分10
3秒前
张亚博发布了新的文献求助10
3秒前
DU发布了新的文献求助10
4秒前
ll完成签到,获得积分10
4秒前
5秒前
ding应助usokb采纳,获得10
5秒前
6秒前
Tonald Yang发布了新的文献求助10
6秒前
冷艳的凡阳完成签到,获得积分10
7秒前
傲娇丹翠完成签到,获得积分10
7秒前
Yang发布了新的文献求助10
8秒前
一个火蓉果啊完成签到,获得积分10
9秒前
重要问筠完成签到,获得积分10
9秒前
Zhoujian发布了新的文献求助10
9秒前
10秒前
curry发布了新的文献求助10
10秒前
丘比特应助henry采纳,获得10
10秒前
Ying应助君莫笑采纳,获得10
10秒前
10秒前
lie完成签到,获得积分10
11秒前
我是老大应助sunyanghu369采纳,获得10
11秒前
DU完成签到,获得积分10
12秒前
老实的大白菜真实的钥匙完成签到,获得积分10
12秒前
米里迷路完成签到,获得积分10
12秒前
13秒前
wwx发布了新的文献求助10
13秒前
summor发布了新的文献求助10
14秒前
灵巧的柚子完成签到,获得积分20
14秒前
熊饼干完成签到,获得积分10
14秒前
苗条棒棒糖完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
17秒前
虚幻白玉完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057