已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory

山崩 样品(材料) 采样(信号处理) 比例(比率) 计算机科学 人工智能 统计 机器学习 地质学 岩土工程 地图学 数学 地理 化学 滤波器(信号处理) 色谱法 计算机视觉
作者
Faming Huang,Haowen Xiong,Shui‐Hua Jiang,Chi Yao,Xuanmei Fan,Filippo Catani,Zhilu Chang,Xiaoting Zhou,Jingsong Huang,K Y Liu
出处
期刊:Earth-Science Reviews [Elsevier]
卷期号:250: 104700-104700 被引量:6
标识
DOI:10.1016/j.earscirev.2024.104700
摘要

Fully supervised machine learning models are widely applied for landslide susceptibility prediction (LSP), mainly using landslide and non-landslide samples as output variables and related conditioning factors as input variables. However, there are many uncertain issues in LSP modelling; for example, known landslide samples may have errors, non-landslide samples randomly selected from the whole study area are not accurate, the ratio of landslide to non-landslide samples set as 1:1 is not consistent with the actual landslide distribution characteristics, it is unreasonable to assign samples labelled non-landslide a probability of 0, and it is difficult to achieve a comprehensive assessment of LSP performance. Based on a review of the literature, we innovatively propose a semi-supervised imbalanced theory to overcome these uncertain issues. First, based on landslide samples (occurrence probability assigned 1), randomly selected non-landslide samples (occurrence probability assigned 0), and slope units divided by the multi-scale segmentation method and related conditioning factors, a supervised machine learning model is constructed and used to predict the initial landslide susceptibility indexes (LSIs), which are then classified as very low, low, moderate, high and very high landslide susceptibility levels (LSLs). Second, the landslide samples with LSLs classified as very low are removed to reduce errors in landslides, and non-landslide samples are randomly selected from the low and very low LSL groups to ensure the accuracy of non-landslides. We refer to this type of sample selection as a semi-supervised learning strategy. Third, the sampling ratio of landslide to non-landslide samples is successively set to values from 1:1 to 1:200, the initial LSIs are assigned as the labels of the corresponding non-landslide samples, and the labels of landslide samples are still assigned the value 1. We call these processes as the imbalanced sampling strategy. Fourth, we use the labelled landslide and non-landslide samples to train and test the supervised machine learning again. Finally, the optimal ratio of landslide samples to non-landslide samples can be determined to obtain the final LSP results through comparisons of LSP accuracy and LSI distribution characteristics under different sampling ratios. Jiujiang City in Jiangxi Province of China is the study area. The results show that the ROC and prediction rate accuracies of semi-supervised imbalanced RF model gradually increase from 0.979 and 0.853 to 0.990 and 0.912, respectively, with the imbalanced ratios rise from 1:1 to 1:160. Then both accuracies tend to converge as the ratio rises from 160 to 200. Hence, the LSP results of the semi-supervised imbalanced theory are efficient when the ratio of landslides to non-landslides is1:160. We conclude that the proposed theory significantly improves the theoretical basis of LSP modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
番茄完成签到 ,获得积分10
刚刚
田様应助完美笑翠采纳,获得10
9秒前
虚幻的冰露完成签到 ,获得积分10
14秒前
糊涂的不尤完成签到 ,获得积分10
14秒前
JOYJOYJOJO发布了新的文献求助10
17秒前
18秒前
20秒前
竹浠发布了新的文献求助10
23秒前
24秒前
加菲丰丰应助满意的夜柳采纳,获得20
26秒前
有魅力的书本完成签到 ,获得积分10
26秒前
32秒前
32秒前
不方关注了科研通微信公众号
34秒前
水牛应助北冥鱼采纳,获得80
36秒前
Lily完成签到 ,获得积分10
36秒前
小杜发布了新的文献求助10
37秒前
hannuannuan发布了新的文献求助20
38秒前
小枣完成签到 ,获得积分10
39秒前
Tian发布了新的文献求助10
43秒前
43秒前
独特的尔风完成签到,获得积分10
43秒前
清逸完成签到 ,获得积分10
44秒前
北冥鱼完成签到,获得积分10
45秒前
46秒前
蔚欢完成签到 ,获得积分10
46秒前
yimeitongzi完成签到,获得积分20
46秒前
Jiangcm完成签到,获得积分10
48秒前
完美笑翠发布了新的文献求助10
49秒前
49秒前
49秒前
不安的裘完成签到 ,获得积分10
50秒前
kento应助大喜采纳,获得200
51秒前
53秒前
supersky发布了新的文献求助10
56秒前
Yanice_Wan完成签到 ,获得积分10
57秒前
虚幻沛菡完成签到 ,获得积分10
58秒前
59秒前
biancaliu发布了新的文献求助20
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150464
求助须知:如何正确求助?哪些是违规求助? 2801801
关于积分的说明 7845765
捐赠科研通 2459167
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727