Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory

山崩 样品(材料) 采样(信号处理) 比例(比率) 计算机科学 人工智能 统计 机器学习 地质学 岩土工程 地图学 数学 地理 化学 滤波器(信号处理) 色谱法 计算机视觉
作者
Faming Huang,Haowen Xiong,Shui‐Hua Jiang,Chi Yao,Xuanmei Fan,Filippo Catani,Zhilu Chang,Xiaoting Zhou,Jinsong Huang,K Y Liu
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:250: 104700-104700 被引量:61
标识
DOI:10.1016/j.earscirev.2024.104700
摘要

Fully supervised machine learning models are widely applied for landslide susceptibility prediction (LSP), mainly using landslide and non-landslide samples as output variables and related conditioning factors as input variables. However, there are many uncertain issues in LSP modelling; for example, known landslide samples may have errors, non-landslide samples randomly selected from the whole study area are not accurate, the ratio of landslide to non-landslide samples set as 1:1 is not consistent with the actual landslide distribution characteristics, it is unreasonable to assign samples labelled non-landslide a probability of 0, and it is difficult to achieve a comprehensive assessment of LSP performance. Based on a review of the literature, we innovatively propose a semi-supervised imbalanced theory to overcome these uncertain issues. First, based on landslide samples (occurrence probability assigned 1), randomly selected non-landslide samples (occurrence probability assigned 0), and slope units divided by the multi-scale segmentation method and related conditioning factors, a supervised machine learning model is constructed and used to predict the initial landslide susceptibility indexes (LSIs), which are then classified as very low, low, moderate, high and very high landslide susceptibility levels (LSLs). Second, the landslide samples with LSLs classified as very low are removed to reduce errors in landslides, and non-landslide samples are randomly selected from the low and very low LSL groups to ensure the accuracy of non-landslides. We refer to this type of sample selection as a semi-supervised learning strategy. Third, the sampling ratio of landslide to non-landslide samples is successively set to values from 1:1 to 1:200, the initial LSIs are assigned as the labels of the corresponding non-landslide samples, and the labels of landslide samples are still assigned the value 1. We call these processes as the imbalanced sampling strategy. Fourth, we use the labelled landslide and non-landslide samples to train and test the supervised machine learning again. Finally, the optimal ratio of landslide samples to non-landslide samples can be determined to obtain the final LSP results through comparisons of LSP accuracy and LSI distribution characteristics under different sampling ratios. Jiujiang City in Jiangxi Province of China is the study area. The results show that the ROC and prediction rate accuracies of semi-supervised imbalanced RF model gradually increase from 0.979 and 0.853 to 0.990 and 0.912, respectively, with the imbalanced ratios rise from 1:1 to 1:160. Then both accuracies tend to converge as the ratio rises from 160 to 200. Hence, the LSP results of the semi-supervised imbalanced theory are efficient when the ratio of landslides to non-landslides is1:160. We conclude that the proposed theory significantly improves the theoretical basis of LSP modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
Ava应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
1秒前
充电宝应助w_sea采纳,获得10
2秒前
3秒前
qikkk发布了新的文献求助30
3秒前
giugiu发布了新的文献求助10
6秒前
Meihi_Uesugi发布了新的文献求助10
6秒前
czz完成签到,获得积分20
6秒前
7秒前
7秒前
czz发布了新的文献求助30
10秒前
11秒前
斯文败类应助曾经的慕灵采纳,获得10
12秒前
顾末发布了新的文献求助10
13秒前
大个应助独角兽采纳,获得10
15秒前
李博完成签到,获得积分10
15秒前
鹏笑发布了新的文献求助10
15秒前
17秒前
田様应助shinn采纳,获得10
17秒前
w_sea发布了新的文献求助10
21秒前
尹沐完成签到 ,获得积分10
21秒前
giugiu完成签到 ,获得积分20
21秒前
Yu_Chengju完成签到,获得积分10
22秒前
666应助渊思采纳,获得10
24秒前
25秒前
上官若男应助王蕊采纳,获得10
25秒前
所所应助一言矣采纳,获得20
25秒前
思源应助tatami采纳,获得10
25秒前
27秒前
科研通AI5应助enli采纳,获得10
28秒前
Meihi_Uesugi完成签到,获得积分10
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550