Noisy feature decomposition-based multi-label learning with missing labels

缺少数据 计算机科学 人工智能 光学(聚焦) 特征(语言学) 模式识别(心理学) 分解 秩(图论) 机器学习 多标签分类 数据挖掘 数学 语言学 哲学 生态学 物理 组合数学 光学 生物
作者
Jiaman Ding,Yihang Zhang,Lianyin Jia,Xiaodong Fu,Ying Jiang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:662: 120228-120228 被引量:1
标识
DOI:10.1016/j.ins.2024.120228
摘要

In recent years, multi-label learning with missing labels (MLML) has become a popular topic. The major challenge for MLML is enhancing the performance of classifiers in the presence of missing labels. Most existing algorithms focus on recovering missing labels using label correlations. However, incomplete label correlations in the early stages of recovery may adversely affect the results. To address this problem, we focus on the original task of finding the mapping between labels and features and propose a Noisy Feature Decomposition-based Multi-label learning with Missing Labels (NFDMML) method. Specifically, the label information is assumed to be integral, and the features corresponding to missing labels are defined as noisy features. Not recovering the missing labels, we reduce the interference of noisy features in the classifications. Accordingly, the MLML problem is converted into a feature decomposition problem. Based on label correlation, a low-rank relationship is used to eliminate the features caused by missing labels, and reverse mapping is employed to preserve the features corresponding to the relevant labels. We conduct detailed experiments on multiple datasets, and the results clearly demonstrate that the proposed method achieves competitive performance over other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xfy完成签到,获得积分10
3秒前
阳炎完成签到,获得积分10
5秒前
行云流水完成签到,获得积分10
6秒前
7秒前
冷酷尔琴发布了新的文献求助10
11秒前
青水完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
冷酷尔琴完成签到,获得积分10
15秒前
onevip完成签到,获得积分0
17秒前
小莫完成签到 ,获得积分10
19秒前
28秒前
theseus完成签到,获得积分10
29秒前
胡楠完成签到,获得积分10
31秒前
北国雪未消完成签到 ,获得积分10
32秒前
李振博完成签到 ,获得积分10
32秒前
42秒前
雪妮完成签到 ,获得积分10
45秒前
松松发布了新的文献求助20
48秒前
48秒前
iwsaml完成签到 ,获得积分10
48秒前
Caden完成签到 ,获得积分10
51秒前
xmhxpz完成签到,获得积分10
52秒前
was_3完成签到,获得积分10
52秒前
聪慧板凳完成签到,获得积分10
56秒前
1分钟前
buerzi完成签到,获得积分10
1分钟前
魁梧的盼望完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
wzk完成签到,获得积分10
1分钟前
称心翠容完成签到,获得积分10
1分钟前
LaixS完成签到,获得积分10
1分钟前
尊敬代亦发布了新的文献求助10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
青珊发布了新的文献求助10
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
ttxxcdx完成签到 ,获得积分10
1分钟前
胡质斌完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022