Depression Detection Using an Automatic Sleep Staging Method with an Interpretable Channel-Temporal Attention Mechanism

计算机科学 机制(生物学) 睡眠(系统调用) 人工智能 频道(广播) 睡眠阶段 机器学习 脑电图 多导睡眠图 神经科学 电信 心理学 哲学 认识论 操作系统
作者
Jiahui Pan,Jie Liu,Jianhao Zhang,Xueli Li,Dongming Quan,Yuanqing Li
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1418-1432 被引量:2
标识
DOI:10.1109/tcds.2024.3358022
摘要

Despite previous efforts in depression detection studies, there is a scarcity of research on automatic depression detection using sleep structure, and several challenges remain: 1) how to apply sleep staging to detect depression and distinguish easily misjudged classes and 2) how to adaptively capture attentive channel-dimensional information to enhance the interpretability of sleep staging methods. To address these challenges, an automatic sleep staging method based on a channel–temporal attention mechanism and a depression detection method based on sleep structure features are proposed. In sleep staging, a temporal attention mechanism is adopted to update the feature matrix, confidence scores are estimated for each sleep stage, the weight of each channel is adjusted based on these scores, and the final results are obtained through a temporal convolutional network. In depression detection, seven sleep structure features based on the results of sleep staging are extracted for depression detection between unipolar depressive disorder (UDD) patients, bipolar disorder (BD) patients and healthy subjects. Experiments demonstrate the effectiveness of the proposed approaches, and the visualization of the channel attention mechanism illustrates the interpretability of our method. Additionally, this is the first attempt to employ sleep structure features to automatically detect UDD and BD in patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hulakimir完成签到,获得积分10
3秒前
123完成签到 ,获得积分10
3秒前
lotus0311发布了新的文献求助30
4秒前
liwenjie发布了新的文献求助10
4秒前
Andy关注了科研通微信公众号
4秒前
英俊的铭应助锦鲤采纳,获得10
5秒前
陶醉的蜜蜂完成签到,获得积分10
7秒前
8秒前
Mine发布了新的文献求助10
8秒前
平常书本完成签到 ,获得积分10
8秒前
9秒前
hehehe85200完成签到,获得积分20
11秒前
大模型应助abcc1234采纳,获得10
12秒前
研友_nPb9e8完成签到,获得积分10
12秒前
13秒前
xiuwen完成签到,获得积分10
15秒前
tt发布了新的文献求助10
15秒前
yiqingfen完成签到,获得积分20
16秒前
Youdge完成签到,获得积分10
16秒前
CodeCraft应助zhang采纳,获得10
16秒前
quhayley应助孟__采纳,获得10
17秒前
17秒前
往前走别回头完成签到,获得积分10
18秒前
Orange应助ponytail采纳,获得10
18秒前
试尝胆大应助liuzengzhang666采纳,获得10
19秒前
科目三应助MY采纳,获得30
20秒前
对称破缺完成签到,获得积分20
20秒前
leolin完成签到,获得积分10
20秒前
able完成签到 ,获得积分10
20秒前
负责月光发布了新的文献求助10
20秒前
yujia发布了新的文献求助10
21秒前
abcdv发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089