AMYGNN: A Graph Convolutional Neural Network-Based Approach for Predicting Amyloid Formation from Polypeptides

卷积神经网络 图形 计算机科学 人工智能 淀粉样蛋白(真菌学) 计算生物学 化学 机器学习 模式识别(心理学) 理论计算机科学 生物 无机化学
作者
Zuojun Yang,Yuhan Wu,Hao Liu,He Li,Xiaoyuan Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (5): 1751-1762 被引量:2
标识
DOI:10.1021/acs.jcim.3c02035
摘要

There has been an increasing interest in the use of amyloids for constructing various functional materials. The design of amyloid-associated functional materials requires the identification of the core peptide sequences as the fundamental building block. The existing computational methods are limited in terms of delineating polypeptides, the typical non-Euclidean structural data, and they fail to capture the dynamic interactions between amino acids due to ignoring the contextual information from surrounding amino acids. Here, we first propose the use of a state-of-the-art graph convolutional neural network for predicting the trends of amyloid formation from specific peptide sequences (AMYGNN) by abstracting each polypeptide as a graph, in which the constituting amino acids are viewed as nodes and edges characterizing the connections between pairs of amino acids are established when they meet a given distance threshold (Cα–Cα ≤ 5 Å). Our model achieves high performance with accuracy (0.9208), G-mean (0.9203), MCC (0.8417), and F1 (0.9235) in determining the characteristic peptide sequences to form amyloid. 32 of 534 crucial amino acid properties that greatly contribute to the formation of amyloids are ascertained, and the β-folding-like graph structure of a polypeptide is believed to be essential for the formation of amyloid. Our model enables the mapping of polypeptides with underlying interactions between amino acids and provides a quick and precise predictive framework for directing the construction of amyloid-associated functional materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
彭于晏应助霸气的菠萝采纳,获得10
1秒前
黄宇航完成签到,获得积分10
2秒前
爆米花应助wwwww采纳,获得10
2秒前
hyr完成签到,获得积分20
2秒前
2秒前
2秒前
汤圆本圆完成签到,获得积分10
3秒前
粥粥发布了新的文献求助10
3秒前
3秒前
彭于晏应助Echo采纳,获得10
3秒前
代沁完成签到,获得积分10
3秒前
cony发布了新的文献求助10
3秒前
3秒前
刘凤莲完成签到,获得积分20
4秒前
4秒前
K先生发布了新的文献求助10
4秒前
三分糖去冰完成签到 ,获得积分10
4秒前
无极微光应助科研通管家采纳,获得20
5秒前
大个应助科研通管家采纳,获得10
5秒前
迃幵发布了新的文献求助10
5秒前
求助人员应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
zmz驳回了肉鸡应助
6秒前
酷波er应助是小高呀采纳,获得10
6秒前
Doctor_Peng完成签到,获得积分10
6秒前
SciGPT应助小化采纳,获得20
6秒前
6秒前
7秒前
大大发布了新的文献求助10
7秒前
情怀应助夕荀采纳,获得10
7秒前
药药55完成签到,获得积分10
8秒前
8秒前
王叮叮完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034