AMYGNN: A Graph Convolutional Neural Network-Based Approach for Predicting Amyloid Formation from Polypeptides

卷积神经网络 图形 计算机科学 人工智能 淀粉样蛋白(真菌学) 计算生物学 化学 机器学习 模式识别(心理学) 理论计算机科学 生物 无机化学
作者
Zuojun Yang,Yuhan Wu,Hao Liu,He Li,Xiaoyuan Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (5): 1751-1762 被引量:2
标识
DOI:10.1021/acs.jcim.3c02035
摘要

There has been an increasing interest in the use of amyloids for constructing various functional materials. The design of amyloid-associated functional materials requires the identification of the core peptide sequences as the fundamental building block. The existing computational methods are limited in terms of delineating polypeptides, the typical non-Euclidean structural data, and they fail to capture the dynamic interactions between amino acids due to ignoring the contextual information from surrounding amino acids. Here, we first propose the use of a state-of-the-art graph convolutional neural network for predicting the trends of amyloid formation from specific peptide sequences (AMYGNN) by abstracting each polypeptide as a graph, in which the constituting amino acids are viewed as nodes and edges characterizing the connections between pairs of amino acids are established when they meet a given distance threshold (Cα–Cα ≤ 5 Å). Our model achieves high performance with accuracy (0.9208), G-mean (0.9203), MCC (0.8417), and F1 (0.9235) in determining the characteristic peptide sequences to form amyloid. 32 of 534 crucial amino acid properties that greatly contribute to the formation of amyloids are ascertained, and the β-folding-like graph structure of a polypeptide is believed to be essential for the formation of amyloid. Our model enables the mapping of polypeptides with underlying interactions between amino acids and provides a quick and precise predictive framework for directing the construction of amyloid-associated functional materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗成风发布了新的文献求助10
3秒前
浮游应助Kevin采纳,获得10
9秒前
浮游应助扬灵兮采纳,获得10
10秒前
安详的冷安完成签到,获得积分10
11秒前
烟花应助keke采纳,获得10
12秒前
还行吧完成签到 ,获得积分10
13秒前
俏皮的安萱完成签到 ,获得积分10
14秒前
材袅完成签到,获得积分10
15秒前
18秒前
盐焗鱼丸完成签到 ,获得积分10
19秒前
20秒前
20秒前
20秒前
21秒前
keke完成签到,获得积分10
23秒前
TNU发布了新的文献求助10
23秒前
24秒前
Bob发布了新的文献求助10
24秒前
27秒前
hilbet发布了新的文献求助10
29秒前
李琦完成签到 ,获得积分10
30秒前
auggy发布了新的文献求助10
30秒前
Bob完成签到,获得积分10
30秒前
32秒前
淡然葶完成签到 ,获得积分10
33秒前
34秒前
笨笨念文完成签到 ,获得积分10
37秒前
39秒前
46秒前
Cik完成签到,获得积分10
46秒前
Xjx6519发布了新的文献求助10
49秒前
49秒前
领导范儿应助科研通管家采纳,获得10
49秒前
Orange应助科研通管家采纳,获得10
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
无花果应助科研通管家采纳,获得20
49秒前
浮游应助科研通管家采纳,获得10
49秒前
Owen应助科研通管家采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523