AMYGNN: A Graph Convolutional Neural Network-Based Approach for Predicting Amyloid Formation from Polypeptides

卷积神经网络 图形 计算机科学 人工智能 淀粉样蛋白(真菌学) 计算生物学 化学 机器学习 模式识别(心理学) 理论计算机科学 生物 无机化学
作者
Zuojun Yang,Yuhan Wu,Hao Liu,He Li,Xiaoyuan Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (5): 1751-1762 被引量:2
标识
DOI:10.1021/acs.jcim.3c02035
摘要

There has been an increasing interest in the use of amyloids for constructing various functional materials. The design of amyloid-associated functional materials requires the identification of the core peptide sequences as the fundamental building block. The existing computational methods are limited in terms of delineating polypeptides, the typical non-Euclidean structural data, and they fail to capture the dynamic interactions between amino acids due to ignoring the contextual information from surrounding amino acids. Here, we first propose the use of a state-of-the-art graph convolutional neural network for predicting the trends of amyloid formation from specific peptide sequences (AMYGNN) by abstracting each polypeptide as a graph, in which the constituting amino acids are viewed as nodes and edges characterizing the connections between pairs of amino acids are established when they meet a given distance threshold (Cα–Cα ≤ 5 Å). Our model achieves high performance with accuracy (0.9208), G-mean (0.9203), MCC (0.8417), and F1 (0.9235) in determining the characteristic peptide sequences to form amyloid. 32 of 534 crucial amino acid properties that greatly contribute to the formation of amyloids are ascertained, and the β-folding-like graph structure of a polypeptide is believed to be essential for the formation of amyloid. Our model enables the mapping of polypeptides with underlying interactions between amino acids and provides a quick and precise predictive framework for directing the construction of amyloid-associated functional materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
照九州完成签到,获得积分10
2秒前
彭于晏应助JM采纳,获得10
3秒前
三岁完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
5秒前
超级的洋葱完成签到,获得积分20
6秒前
勇猛的小qin完成签到 ,获得积分10
6秒前
orixero应助欣喜安蕾采纳,获得10
6秒前
jiaping发布了新的文献求助10
6秒前
6秒前
8秒前
Angel发布了新的文献求助10
8秒前
今后应助chiynn采纳,获得10
9秒前
9秒前
10秒前
好滴捏发布了新的文献求助10
11秒前
11秒前
11秒前
852应助热心傲珊采纳,获得10
12秒前
13秒前
13秒前
靓丽的鱼发布了新的文献求助10
13秒前
13秒前
屎壳郎先生完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
gone发布了新的文献求助10
15秒前
DAIXI761419发布了新的文献求助10
16秒前
等待冰之发布了新的文献求助10
16秒前
Akim应助jiaping采纳,获得10
17秒前
Aaaaaa瘾发布了新的文献求助10
17秒前
桂羽安发布了新的文献求助10
18秒前
嘿嘿发布了新的文献求助10
18秒前
隐形曼青应助谦让的口红采纳,获得10
18秒前
19秒前
生动凝旋发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487