亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AMYGNN: A Graph Convolutional Neural Network-Based Approach for Predicting Amyloid Formation from Polypeptides

卷积神经网络 图形 计算机科学 人工智能 淀粉样蛋白(真菌学) 计算生物学 化学 机器学习 模式识别(心理学) 理论计算机科学 生物 无机化学
作者
Zuojun Yang,Yuhan Wu,Hao Liu,He Li,Xiaoyuan Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (5): 1751-1762 被引量:2
标识
DOI:10.1021/acs.jcim.3c02035
摘要

There has been an increasing interest in the use of amyloids for constructing various functional materials. The design of amyloid-associated functional materials requires the identification of the core peptide sequences as the fundamental building block. The existing computational methods are limited in terms of delineating polypeptides, the typical non-Euclidean structural data, and they fail to capture the dynamic interactions between amino acids due to ignoring the contextual information from surrounding amino acids. Here, we first propose the use of a state-of-the-art graph convolutional neural network for predicting the trends of amyloid formation from specific peptide sequences (AMYGNN) by abstracting each polypeptide as a graph, in which the constituting amino acids are viewed as nodes and edges characterizing the connections between pairs of amino acids are established when they meet a given distance threshold (Cα–Cα ≤ 5 Å). Our model achieves high performance with accuracy (0.9208), G-mean (0.9203), MCC (0.8417), and F1 (0.9235) in determining the characteristic peptide sequences to form amyloid. 32 of 534 crucial amino acid properties that greatly contribute to the formation of amyloids are ascertained, and the β-folding-like graph structure of a polypeptide is believed to be essential for the formation of amyloid. Our model enables the mapping of polypeptides with underlying interactions between amino acids and provides a quick and precise predictive framework for directing the construction of amyloid-associated functional materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
coco完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
徐矜发布了新的文献求助10
19秒前
Janus完成签到,获得积分10
27秒前
39秒前
空咻咻发布了新的文献求助10
43秒前
且听风吟发布了新的文献求助10
44秒前
47秒前
彩色凡英发布了新的文献求助30
48秒前
52秒前
58秒前
且听风吟完成签到,获得积分10
1分钟前
1分钟前
彩色凡英完成签到,获得积分10
1分钟前
FashionBoy应助呜呼采纳,获得10
1分钟前
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
打打应助zz采纳,获得10
2分钟前
张家宁发布了新的文献求助10
2分钟前
2分钟前
zz发布了新的文献求助10
2分钟前
2分钟前
李志全完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
2分钟前
贼歪歪完成签到,获得积分10
3分钟前
传奇3应助Zhao0112采纳,获得10
3分钟前
3分钟前
eatme完成签到,获得积分10
3分钟前
3分钟前
Zhao0112发布了新的文献求助10
3分钟前
彭于晏应助保持科研热情采纳,获得10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755406
求助须知:如何正确求助?哪些是违规求助? 5494623
关于积分的说明 15381200
捐赠科研通 4893493
什么是DOI,文献DOI怎么找? 2632160
邀请新用户注册赠送积分活动 1579994
关于科研通互助平台的介绍 1535824