Reconfigurable Physical Reservoir Enabled by Polarization of Ferroelectric Polymer P(VDF–TrFE) and Interface Charge‐Trapping/Detrapping in Dual‐Gate IGZO Transistor

材料科学 神经形态工程学 铁电性 晶体管 光电子学 非易失性存储器 铁电聚合物 极化(电化学) 电介质 人工神经网络 计算机科学 电压 电气工程 人工智能 工程类 物理化学 化学
作者
Fang‐Jui Chu,Y. C. Chen,Li‐Chung Shih,Shi‐Cheng Mao,Jen‐Sue Chen
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (10) 被引量:4
标识
DOI:10.1002/adfm.202310951
摘要

Abstract Neuromorphic computers promise to enhance computing efficiency by eliminating conventional von Neumann architecture bottlenecks. Bio‐inspired artificial neural networks, such as feedforward neural networks and reservoir computing (RC), face challenges due to the unique memristor requirements. In this study, a dual‐gate ferroelectric polymer P(VDF–TrFE)‐coupled thin film transistor (DG–TFT) with an IGZO channel is presented. It yields complementary short‐ and long‐term memory functionalities are derived from the charge‐trapping/detrapping process at the IGZO‐SiO 2 dielectric interface and ferroelectric polarization. These memory functionalities can be switched using different gated modes to meet the requirements of the reservoir and readout layers in RC. The bottom‐gated mode (BG‐mode) exhibits short‐term memory effects and nonlinear dynamics, whereas the top‐gated mode (TG‐mode) displays improved long‐term memory characteristics. To evaluate the long‐term memory properties, Python is used for pattern recognition. For the nonlinear dynamics and short‐term memory response of the BG‐mode, the DG–TFT is employed as a reservoir layer to handle various temporal tasks. Notably, the polarization level of the ferroelectric layer is coupled to improve the richness of the reservoir states, providing a reconfigurable RC system with an expanded capacity to effectively process and accommodate diverse signals. This holds potential for next‐generation hybrid intelligent applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
圆月弯刀完成签到 ,获得积分10
4秒前
坦率白萱应助DJANGO采纳,获得30
6秒前
露亮完成签到,获得积分10
7秒前
Bressanone发布了新的文献求助10
7秒前
8秒前
斯文的慕儿完成签到 ,获得积分10
10秒前
露亮发布了新的文献求助10
10秒前
10秒前
智慧少女不头秃完成签到,获得积分10
12秒前
33完成签到,获得积分10
13秒前
所所应助感谢有你采纳,获得10
15秒前
15秒前
16秒前
17秒前
乐乐应助anna采纳,获得10
20秒前
潇湘雪月发布了新的文献求助10
20秒前
20秒前
刘燕发布了新的文献求助10
21秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
25秒前
俏皮芷蕊发布了新的文献求助10
25秒前
26秒前
29秒前
29秒前
30秒前
Rondab应助张学友采纳,获得10
33秒前
33秒前
anna发布了新的文献求助10
34秒前
36秒前
如约而至完成签到 ,获得积分10
36秒前
36秒前
37秒前
38秒前
38秒前
aifd完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105