Characterising the distribution of mangroves along the southern coast of Vietnam using multi-spectral indices and a deep learning model

红树林 环境科学 红树林生态系统 比例(比率) 多光谱图像 航程(航空) 高光谱成像 栖息地 遥感 水质 地理 自然地理学 生态学 地图学 生物 复合材料 材料科学
作者
Thuong V. Tran,Ruth Reef,Xuan Zhu,Andrew Gunn
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:923: 171367-171367 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.171367
摘要

Mangroves are an ecologically and economically valuable ecosystem that provides a range of ecological services, including habitat for a diverse range of plant and animal species, protection of coastlines from erosion and storms, carbon sequestration, and improvement of water quality. Despite their significant ecological role, in many areas, including in Vietnam, large scale losses have occurred, although restoration efforts have been underway. Understanding the scale of the loss and the efficacy of restoration requires high resolution temporal monitoring of mangrove cover on large scales. We have produced a time series of 10-m-resolution mangrove cover maps using the Multispectral Instrument on the Sentinel 2 satellites and with this tool measured the changes in mangrove distribution on the Vietnamese Southern Coast (VSC). We extracted the annual mangrove cover ranging from 2016 to 2023 using a deep learning model with a U-Net architecture based on 17 spectral indices. Additionally, a comparison of misclassification by the model with global products was conducted, indicating that the U-Net architecture demonstrated superior performance when compared to experiments including multispectral bands of Sentinel-2 and time-series of Sentinel-1 data, as shown by the highest performing spectral indices. The generated performance metrics, including overall accuracy, precision, recall, and F1-score were above 90 % for entire years. Water indices were investigated as the most important variables for mangrove extraction. Our study revealed some misclassifications by global products such as World Cover and Global Mangrove Watch and highlighted the significance of our study for local analysis. While we did observe a loss of 34,778 ha (42.2 %) of mangrove area in the region, 47,688 ha (57.8 %) of new mangrove area appeared, resulting in a net gain of 12,910 ha (15.65 %) over the eight-year period of the study. The majority of new mangrove areas were concentrated in Ca Mau peninsulas and within estuaries undergoing recovery programs and natural recovery processes. Mangrove loss occurred in regions where industrial development, wind farm projects, reclaimed land, and shrimp pond expansion is occurring. Our study provides a theoretical framework as well as up-to-date data for mapping and monitoring mangrove cover change that can be readily applied at other sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyq发布了新的文献求助10
刚刚
刚刚
1秒前
张学良发布了新的文献求助10
1秒前
1秒前
cds完成签到,获得积分10
1秒前
1秒前
2秒前
cds发布了新的文献求助10
3秒前
abc发布了新的文献求助10
4秒前
Jasper应助山茶采纳,获得10
4秒前
隐形曼青应助刘丰铭采纳,获得10
4秒前
orixero应助韩霖采纳,获得10
4秒前
聪慧的土豆关注了科研通微信公众号
4秒前
6秒前
6秒前
解语花发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
Stella应助甜的瓜采纳,获得10
8秒前
10秒前
FashionBoy应助蔚蓝的天空采纳,获得10
10秒前
kk发布了新的文献求助10
10秒前
LFC发布了新的文献求助10
10秒前
11秒前
CodeCraft应助周苗采纳,获得10
11秒前
FashionBoy应助优秀的凡蕾采纳,获得10
12秒前
12秒前
JamesPei应助zpw123123采纳,获得10
13秒前
13秒前
13秒前
爱笑以松完成签到,获得积分10
13秒前
14秒前
mh发布了新的文献求助50
14秒前
科研通AI6应助正直的班采纳,获得10
15秒前
15秒前
vertl发布了新的文献求助10
16秒前
16秒前
17秒前
Seathern发布了新的文献求助10
17秒前
韩霖发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013