Characterising the distribution of mangroves along the southern coast of Vietnam using multi-spectral indices and a deep learning model

红树林 环境科学 红树林生态系统 比例(比率) 多光谱图像 航程(航空) 高光谱成像 栖息地 遥感 水质 地理 自然地理学 生态学 地图学 生物 材料科学 复合材料
作者
Thuong V. Tran,Ruth Reef,Xuan Zhu,Andrew Gunn
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:923: 171367-171367 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.171367
摘要

Mangroves are an ecologically and economically valuable ecosystem that provides a range of ecological services, including habitat for a diverse range of plant and animal species, protection of coastlines from erosion and storms, carbon sequestration, and improvement of water quality. Despite their significant ecological role, in many areas, including in Vietnam, large scale losses have occurred, although restoration efforts have been underway. Understanding the scale of the loss and the efficacy of restoration requires high resolution temporal monitoring of mangrove cover on large scales. We have produced a time series of 10-m-resolution mangrove cover maps using the Multispectral Instrument on the Sentinel 2 satellites and with this tool measured the changes in mangrove distribution on the Vietnamese Southern Coast (VSC). We extracted the annual mangrove cover ranging from 2016 to 2023 using a deep learning model with a U-Net architecture based on 17 spectral indices. Additionally, a comparison of misclassification by the model with global products was conducted, indicating that the U-Net architecture demonstrated superior performance when compared to experiments including multispectral bands of Sentinel-2 and time-series of Sentinel-1 data, as shown by the highest performing spectral indices. The generated performance metrics, including overall accuracy, precision, recall, and F1-score were above 90 % for entire years. Water indices were investigated as the most important variables for mangrove extraction. Our study revealed some misclassifications by global products such as World Cover and Global Mangrove Watch and highlighted the significance of our study for local analysis. While we did observe a loss of 34,778 ha (42.2 %) of mangrove area in the region, 47,688 ha (57.8 %) of new mangrove area appeared, resulting in a net gain of 12,910 ha (15.65 %) over the eight-year period of the study. The majority of new mangrove areas were concentrated in Ca Mau peninsulas and within estuaries undergoing recovery programs and natural recovery processes. Mangrove loss occurred in regions where industrial development, wind farm projects, reclaimed land, and shrimp pond expansion is occurring. Our study provides a theoretical framework as well as up-to-date data for mapping and monitoring mangrove cover change that can be readily applied at other sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白小白完成签到,获得积分10
2秒前
3秒前
俭朴的小熊猫完成签到,获得积分10
4秒前
阿离完成签到,获得积分20
5秒前
帅气之槐完成签到,获得积分20
5秒前
记得刷牙发布了新的文献求助10
8秒前
8秒前
不会学术的羊完成签到,获得积分10
9秒前
yuan发布了新的文献求助10
10秒前
ywj完成签到 ,获得积分10
10秒前
11秒前
向北大望完成签到,获得积分10
12秒前
尽断完成签到,获得积分10
12秒前
CipherSage应助Yolanda3088采纳,获得20
12秒前
13秒前
13秒前
14秒前
阳光he完成签到,获得积分10
15秒前
向北大望发布了新的文献求助10
17秒前
我是老大应助认真的傲柏采纳,获得30
17秒前
17秒前
欢呼的茉莉完成签到 ,获得积分10
18秒前
18秒前
霍山柳发布了新的文献求助10
19秒前
科研路上的干饭桶完成签到,获得积分10
20秒前
xu发布了新的文献求助10
20秒前
21秒前
跳跃雨寒完成签到 ,获得积分10
22秒前
right完成签到 ,获得积分10
25秒前
曾经的刺猬完成签到,获得积分10
26秒前
彭于晏应助123采纳,获得10
27秒前
Yolanda3088完成签到,获得积分20
27秒前
yuan完成签到,获得积分20
29秒前
stephenzh完成签到,获得积分10
31秒前
机智的紫丝完成签到,获得积分10
32秒前
哭泣凤灵完成签到 ,获得积分10
32秒前
33秒前
GodMG应助可耐的雁凡采纳,获得10
33秒前
38秒前
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574