亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterising the distribution of mangroves along the southern coast of Vietnam using multi-spectral indices and a deep learning model

红树林 环境科学 红树林生态系统 比例(比率) 多光谱图像 航程(航空) 高光谱成像 栖息地 遥感 水质 地理 自然地理学 生态学 地图学 生物 复合材料 材料科学
作者
Thuong V. Tran,Ruth Reef,Xuan Zhu,Andrew Gunn
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:923: 171367-171367 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.171367
摘要

Mangroves are an ecologically and economically valuable ecosystem that provides a range of ecological services, including habitat for a diverse range of plant and animal species, protection of coastlines from erosion and storms, carbon sequestration, and improvement of water quality. Despite their significant ecological role, in many areas, including in Vietnam, large scale losses have occurred, although restoration efforts have been underway. Understanding the scale of the loss and the efficacy of restoration requires high resolution temporal monitoring of mangrove cover on large scales. We have produced a time series of 10-m-resolution mangrove cover maps using the Multispectral Instrument on the Sentinel 2 satellites and with this tool measured the changes in mangrove distribution on the Vietnamese Southern Coast (VSC). We extracted the annual mangrove cover ranging from 2016 to 2023 using a deep learning model with a U-Net architecture based on 17 spectral indices. Additionally, a comparison of misclassification by the model with global products was conducted, indicating that the U-Net architecture demonstrated superior performance when compared to experiments including multispectral bands of Sentinel-2 and time-series of Sentinel-1 data, as shown by the highest performing spectral indices. The generated performance metrics, including overall accuracy, precision, recall, and F1-score were above 90 % for entire years. Water indices were investigated as the most important variables for mangrove extraction. Our study revealed some misclassifications by global products such as World Cover and Global Mangrove Watch and highlighted the significance of our study for local analysis. While we did observe a loss of 34,778 ha (42.2 %) of mangrove area in the region, 47,688 ha (57.8 %) of new mangrove area appeared, resulting in a net gain of 12,910 ha (15.65 %) over the eight-year period of the study. The majority of new mangrove areas were concentrated in Ca Mau peninsulas and within estuaries undergoing recovery programs and natural recovery processes. Mangrove loss occurred in regions where industrial development, wind farm projects, reclaimed land, and shrimp pond expansion is occurring. Our study provides a theoretical framework as well as up-to-date data for mapping and monitoring mangrove cover change that can be readily applied at other sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
7秒前
Sotr完成签到,获得积分10
8秒前
lina发布了新的文献求助10
13秒前
boshi完成签到,获得积分10
14秒前
Sotr关注了科研通微信公众号
18秒前
lina完成签到,获得积分10
25秒前
39秒前
肾宝发布了新的文献求助10
44秒前
zqq完成签到,获得积分0
51秒前
52秒前
55秒前
wzq756发布了新的文献求助10
59秒前
小蘑菇应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
含糊的镜子完成签到 ,获得积分20
1分钟前
lovehuahua发布了新的文献求助10
1分钟前
空白格完成签到 ,获得积分10
1分钟前
1分钟前
北执完成签到,获得积分10
1分钟前
Yikao完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
12345发布了新的文献求助10
1分钟前
慕青应助lovehuahua采纳,获得10
1分钟前
Akim应助鹤唳采纳,获得10
2分钟前
2分钟前
鹤唳发布了新的文献求助10
2分钟前
2分钟前
鹤唳完成签到,获得积分10
2分钟前
Gideon完成签到,获得积分10
2分钟前
坦率的金针菇完成签到 ,获得积分10
2分钟前
2分钟前
眯眯眼的雪莲完成签到 ,获得积分10
2分钟前
kendall完成签到 ,获得积分10
2分钟前
仰勒完成签到 ,获得积分10
2分钟前
季禹发布了新的文献求助10
3分钟前
freyaaaaa应助科研通管家采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498268
求助须知:如何正确求助?哪些是违规求助? 4595573
关于积分的说明 14449353
捐赠科研通 4528276
什么是DOI,文献DOI怎么找? 2481441
邀请新用户注册赠送积分活动 1465573
关于科研通互助平台的介绍 1438310