Top-down nanostructured multilayer MoS2 with atomically sharp edges for electrochemical hydrogen evolution reaction

电化学 扫描电化学显微镜 电解质 分解水 纳米片 析氧 材料科学 电催化剂 纳米技术 化学工程 循环伏安法 化学 催化作用 电极 物理化学 光催化 工程类 生物化学
作者
Alexander Yu. Polyakov,S. Al Bacha,Waleed M. A. El Rouby,Battulga Munkhbat,Loïc Assaud,Pierre Millet,Björn Wickman,Timur Shegai
出处
期刊:Materials Today Nano [Elsevier BV]
卷期号:25: 100467-100467 被引量:3
标识
DOI:10.1016/j.mtnano.2024.100467
摘要

Cost-efficient and readily scalable platinum-free electrocatalysts are crucial for a smooth transition to future renewable energy systems. Top-down activation of MoS2 promises the production of sustainable hydrogen evolution electrocatalysts from the Earth-abundant molybdenite ore. Here, the nanopatterning of multilayer MoS2 with numerous zigzag edges is explored as a pathway to enhance hydrogen evolution reaction (HER). Nanopatterned single-nanosheet MoS2 electrodes are assessed by two highly localized electrochemical techniques: selected area voltammetry (with lithography-defined regions of electrode-electrolyte contact) and Scanning ElectroChemical Microscopy (SECM). The nanopatterning effect is the most pronounced after prolonged electrochemical cycling in an acidic electrolyte. The electrocatalytic hydrogen evolution activity of edge-enriched electrodes is dramatically enhanced: the maximum electrochemical current density (jmax) achieved at -510 mV vs. reversible hydrogen electrode (mVRHE) is increased by two orders of magnitude, reaching >300 mA.cm−2. Both the η10 and η100 overpotentials are significantly reduced as well. Meanwhile, pristine MoS2 shows just ≈6 times jmax increase (≈30 mA.cm−2) after the very same cycling. The increased electrocatalytic activity comes with electrode morphology degradation, evidenced by ex-situ scanning electron microscopy. SECM directly visualizes stronger HER activity in regions with densely located zigzag edges. Intense white light illumination significantly boosts HER on MoS2 electrodes due to the photo-enhanced MoS2 conductivity. These results improve the understanding and reveal the limitations of MoS2-based electrocatalytic water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芽芽完成签到,获得积分10
刚刚
研友_nPPERn完成签到,获得积分10
刚刚
不安愚志完成签到 ,获得积分10
刚刚
lovesonic完成签到,获得积分10
刚刚
8989完成签到,获得积分10
刚刚
饕餮肉丝发布了新的文献求助10
1秒前
NexusExplorer应助bjx采纳,获得10
1秒前
酷波er应助Maisie采纳,获得10
1秒前
wheat完成签到,获得积分10
1秒前
曾泳钧完成签到,获得积分10
2秒前
cmcm完成签到,获得积分10
2秒前
彭于晏应助夜城如梦醉采纳,获得10
2秒前
2秒前
2秒前
凯凯完成签到 ,获得积分10
2秒前
lilili完成签到,获得积分10
3秒前
人沐发布了新的文献求助10
3秒前
4秒前
酒巷完成签到,获得积分10
4秒前
MZ完成签到,获得积分10
4秒前
4秒前
4秒前
Yurrrrt完成签到,获得积分10
5秒前
搞对完成签到 ,获得积分10
5秒前
上官若男应助自然水风采纳,获得30
5秒前
kbj完成签到,获得积分10
6秒前
华仔应助cjypdf采纳,获得10
6秒前
6秒前
泛柏舟发布了新的文献求助10
6秒前
ExtroGod完成签到,获得积分10
6秒前
疯子不会学应助ccalvintan采纳,获得10
6秒前
zhaosh完成签到,获得积分10
7秒前
7秒前
美文完成签到,获得积分10
7秒前
吃饭了没完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
芝诺完成签到 ,获得积分10
7秒前
今后应助激动的月亮采纳,获得10
8秒前
8秒前
浮浮世世完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614030
求助须知:如何正确求助?哪些是违规求助? 4018429
关于积分的说明 12438324
捐赠科研通 3701118
什么是DOI,文献DOI怎么找? 2041105
邀请新用户注册赠送积分活动 1073803
科研通“疑难数据库(出版商)”最低求助积分说明 957479