Top-down nanostructured multilayer MoS2 with atomically sharp edges for electrochemical hydrogen evolution reaction

电化学 扫描电化学显微镜 电解质 分解水 纳米片 析氧 材料科学 电催化剂 纳米技术 化学工程 循环伏安法 化学 催化作用 电极 物理化学 生物化学 光催化 工程类
作者
Alexander Yu. Polyakov,S. Al Bacha,Waleed M. A. El Rouby,Battulga Munkhbat,Loïc Assaud,Pierre Millet,Björn Wickman,Timur Shegai
出处
期刊:Materials Today Nano [Elsevier BV]
卷期号:25: 100467-100467 被引量:3
标识
DOI:10.1016/j.mtnano.2024.100467
摘要

Cost-efficient and readily scalable platinum-free electrocatalysts are crucial for a smooth transition to future renewable energy systems. Top-down activation of MoS2 promises the production of sustainable hydrogen evolution electrocatalysts from the Earth-abundant molybdenite ore. Here, the nanopatterning of multilayer MoS2 with numerous zigzag edges is explored as a pathway to enhance hydrogen evolution reaction (HER). Nanopatterned single-nanosheet MoS2 electrodes are assessed by two highly localized electrochemical techniques: selected area voltammetry (with lithography-defined regions of electrode-electrolyte contact) and Scanning ElectroChemical Microscopy (SECM). The nanopatterning effect is the most pronounced after prolonged electrochemical cycling in an acidic electrolyte. The electrocatalytic hydrogen evolution activity of edge-enriched electrodes is dramatically enhanced: the maximum electrochemical current density (jmax) achieved at -510 mV vs. reversible hydrogen electrode (mVRHE) is increased by two orders of magnitude, reaching >300 mA.cm−2. Both the η10 and η100 overpotentials are significantly reduced as well. Meanwhile, pristine MoS2 shows just ≈6 times jmax increase (≈30 mA.cm−2) after the very same cycling. The increased electrocatalytic activity comes with electrode morphology degradation, evidenced by ex-situ scanning electron microscopy. SECM directly visualizes stronger HER activity in regions with densely located zigzag edges. Intense white light illumination significantly boosts HER on MoS2 electrodes due to the photo-enhanced MoS2 conductivity. These results improve the understanding and reveal the limitations of MoS2-based electrocatalytic water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪人雄发布了新的文献求助10
1秒前
2秒前
23lk完成签到,获得积分10
3秒前
杨哈哈发布了新的文献求助10
3秒前
4秒前
乐乐应助念念采纳,获得10
4秒前
5秒前
yizhiGao应助甜美不评采纳,获得10
5秒前
Lunwen发布了新的文献求助30
6秒前
大黄发布了新的文献求助10
6秒前
orixero应助舍予有服采纳,获得10
6秒前
科研小白发布了新的文献求助20
6秒前
7秒前
夹子方糖发布了新的文献求助10
9秒前
杨哈哈完成签到,获得积分10
9秒前
9秒前
zu关闭了zu文献求助
10秒前
大黄完成签到,获得积分10
11秒前
柯一一应助博ge采纳,获得10
12秒前
cuncun完成签到,获得积分10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
打打应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得30
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980258
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220452
捐赠科研通 3261658
什么是DOI,文献DOI怎么找? 1800882
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807234