MixSleepNet: A Multi-Type Convolution Combined Sleep Stage Classification Model

计算机科学 卷积(计算机科学) 模式识别(心理学) 睡眠阶段 人工智能 图形 睡眠(系统调用) 生物信号 卷积神经网络 频道(广播) 脑电图 语音识别 多导睡眠图 医学 理论计算机科学 计算机视觉 操作系统 精神科 滤波器(信号处理) 人工神经网络 计算机网络
作者
X. Ji,Yan Li,Peng Wen,Prabal Datta Barua,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107992-107992
标识
DOI:10.1016/j.cmpb.2023.107992
摘要

Sleep staging is an essential step for sleep disorder diagnosis, which is time-intensive and laborious for experts to perform this work manually. Automatic sleep stage classification methods not only alleviate experts from these demanding tasks but also enhance the accuracy and efficiency of the classification process.A novel multi-channel biosignal-based model constructed by the combination of a 3D convolutional operation and a graph convolutional operation is proposed for the automated sleep stages using various physiological signals. Both the 3D convolution and graph convolution can aggregate information from neighboring brain areas, which helps to learn intrinsic connections from the biosignals. Electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG) and electrocardiogram (ECG) signals are employed to extract time domain and frequency domain features. Subsequently, these signals are input to the 3D convolutional and graph convolutional branches, respectively. The 3D convolution branch can explore the correlations between multi-channel signals and multi-band waves in each channel in the time series, while the graph convolution branch can explore the connections between each channel and each frequency band. In this work, we have developed the proposed multi-channel convolution combined sleep stage classification model (MixSleepNet) using ISRUC datasets (Subgroup 3 and 50 random samples from Subgroup 1).Based on the first expert's label, our generated MixSleepNet yielded an accuracy, F1-score and Cohen kappa scores of 0.830, 0.821 and 0.782, respectively for ISRUC-S3. It obtained accuracy, F1-score and Cohen kappa scores of 0.812, 0.786, and 0.756, respectively for the ISRUC-S1 dataset. In accordance with the evaluations conducted by the second expert, the comprehensive accuracies, F1-scores, and Cohen kappa coefficients for the ISRUC-S3 and ISRUC-S1 datasets are determined to be 0.837, 0.820, 0.789, and 0.829, 0.791, 0.775, respectively.The results of the performance metrics by the proposed method are much better than those from all the compared models. Additional experiments were carried out on the ISRUC-S3 sub-dataset to evaluate the contributions of each module towards the classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助yefeng采纳,获得10
1秒前
多发文章完成签到 ,获得积分10
1秒前
2秒前
jhz完成签到,获得积分10
2秒前
六月完成签到,获得积分10
3秒前
李健的粉丝团团长应助gdh采纳,获得10
4秒前
dcy完成签到,获得积分20
4秒前
zzy完成签到,获得积分10
5秒前
lihangyu完成签到,获得积分10
6秒前
6秒前
科目三应助清脆绿旋采纳,获得50
6秒前
8秒前
9秒前
li发布了新的文献求助10
9秒前
追寻不平发布了新的文献求助10
10秒前
所所应助白天亮采纳,获得10
10秒前
11秒前
受伤南霜完成签到,获得积分10
11秒前
活泼火水完成签到,获得积分10
12秒前
12秒前
13秒前
瘦瘦问旋发布了新的文献求助10
14秒前
14秒前
干净的时光应助魏1122采纳,获得10
15秒前
大气的远望完成签到,获得积分10
15秒前
布丁完成签到,获得积分10
16秒前
16秒前
勾勾1991发布了新的文献求助10
16秒前
17秒前
初a发布了新的文献求助30
17秒前
li完成签到,获得积分10
18秒前
18秒前
脑洞疼应助hhhh采纳,获得10
19秒前
Pureasy完成签到,获得积分10
19秒前
筱筱完成签到,获得积分10
20秒前
9way完成签到 ,获得积分10
21秒前
21秒前
Weining发布了新的文献求助10
22秒前
张阳阳发布了新的文献求助10
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912