已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RPMVCDA: Random Perturbation and Multi-View Graph Convolutional Networks for CircRNA-Disease Association Prediction

计算机科学 图形 随机图 摄动(天文学) 人工智能 理论计算机科学 物理 量子力学
作者
Xin He,Junliang Shang,Daohui Ge,Feng Li,Jin‐Xing Liu
标识
DOI:10.1109/tcbbio.2024.3506615
摘要

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models. In this study, we propose RPMVCDA, a computational model based on random perturbation and multi-view graph convolutional networks (GCNs), to predict circRNA-disease associations. Specifically, RPMVCDA first constructs multiple similarity networks of circRNAs and diseases, applying multi-view GCNs to obtain embedding representations. Second, to enable message passing between circRNA-disease samples, RPMVCDA constructs the feature similarity association network. Third, RPMVCDA introduces a random perturbation association network to further explore the potential associations, which is the highlight of the RPMVCDA. Finally, based on these three association networks, RPMVCDA utilizes the self-attention mechanism to generate high-quality features for circRNAs and diseases, which are used to calculate association scores. To evaluate the performance of RPMVCDA, five-fold cross-validation and case studies on the CircR2Disease dataset are performed, results of which shows that RPMVCDA outperforms the compared models, implying that it might be an alternative for predicting circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Tanya47应助科研通管家采纳,获得10
1秒前
romance发布了新的文献求助10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
Tanya47应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Tanya47应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
风行域完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
爆米花应助友好谷蓝采纳,获得10
4秒前
西吴完成签到 ,获得积分10
4秒前
焰古完成签到 ,获得积分10
4秒前
无情的问枫完成签到 ,获得积分10
4秒前
涵涵涵hh完成签到 ,获得积分10
5秒前
lijunliang完成签到,获得积分10
6秒前
hh1106完成签到 ,获得积分20
6秒前
6秒前
minkeyantong完成签到 ,获得积分10
6秒前
6秒前
kkpzc完成签到 ,获得积分10
8秒前
粗犷的灵松完成签到,获得积分10
8秒前
无极微光应助开朗的lala采纳,获得20
8秒前
9秒前
yangjian完成签到,获得积分10
9秒前
洁净的小熊猫完成签到,获得积分10
9秒前
小方完成签到,获得积分10
10秒前
毛爱民发布了新的文献求助10
11秒前
激昂的吐司完成签到,获得积分20
13秒前
14秒前
666发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759