RPMVCDA: Random Perturbation and Multi-View Graph Convolutional Networks for CircRNA-Disease Association Prediction

计算机科学 图形 随机图 摄动(天文学) 人工智能 理论计算机科学 物理 量子力学
作者
Xin He,Junliang Shang,Daohui Ge,Feng Li,Jin‐Xing Liu
标识
DOI:10.1109/tcbbio.2024.3506615
摘要

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models. In this study, we propose RPMVCDA, a computational model based on random perturbation and multi-view graph convolutional networks (GCNs), to predict circRNA-disease associations. Specifically, RPMVCDA first constructs multiple similarity networks of circRNAs and diseases, applying multi-view GCNs to obtain embedding representations. Second, to enable message passing between circRNA-disease samples, RPMVCDA constructs the feature similarity association network. Third, RPMVCDA introduces a random perturbation association network to further explore the potential associations, which is the highlight of the RPMVCDA. Finally, based on these three association networks, RPMVCDA utilizes the self-attention mechanism to generate high-quality features for circRNAs and diseases, which are used to calculate association scores. To evaluate the performance of RPMVCDA, five-fold cross-validation and case studies on the CircR2Disease dataset are performed, results of which shows that RPMVCDA outperforms the compared models, implying that it might be an alternative for predicting circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
leslie花花发布了新的文献求助10
3秒前
许容完成签到,获得积分10
3秒前
小二郎应助alan采纳,获得10
5秒前
科研小白完成签到,获得积分10
7秒前
wang完成签到,获得积分10
7秒前
sam完成签到,获得积分10
8秒前
高大十三完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
研友_V8R16Z完成签到,获得积分10
11秒前
cch发布了新的文献求助10
13秒前
傲娇的寇发布了新的文献求助10
14秒前
15秒前
追寻宛海发布了新的文献求助20
15秒前
15秒前
飞翔完成签到,获得积分10
16秒前
感动丸子发布了新的文献求助10
16秒前
SciGPT应助leslie花花采纳,获得10
17秒前
袁科研完成签到,获得积分10
19秒前
20秒前
傲娇的寇完成签到 ,获得积分10
20秒前
枫也发布了新的文献求助10
21秒前
奋斗的雪曼完成签到,获得积分10
23秒前
君君应助睡醒做科研采纳,获得20
24秒前
zhen发布了新的文献求助10
25秒前
29秒前
费胜发布了新的文献求助30
29秒前
努努酱完成签到 ,获得积分10
30秒前
31秒前
费雪卉发布了新的文献求助10
32秒前
Hhhhhhu发布了新的文献求助10
35秒前
35秒前
英姑应助zhouxuefeng采纳,获得10
36秒前
涵泽发布了新的文献求助10
39秒前
乐观的鸽子完成签到,获得积分10
39秒前
顾矜应助追寻宛海采纳,获得20
40秒前
41秒前
baobaonaixi完成签到,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494