RPMVCDA: Random Perturbation and Multi-View Graph Convolutional Networks for CircRNA-Disease Association Prediction

计算机科学 图形 随机图 摄动(天文学) 人工智能 理论计算机科学 物理 量子力学
作者
Xin He,Junliang Shang,Daohui Ge,Feng Li,Jin‐Xing Liu
标识
DOI:10.1109/tcbbio.2024.3506615
摘要

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models. In this study, we propose RPMVCDA, a computational model based on random perturbation and multi-view graph convolutional networks (GCNs), to predict circRNA-disease associations. Specifically, RPMVCDA first constructs multiple similarity networks of circRNAs and diseases, applying multi-view GCNs to obtain embedding representations. Second, to enable message passing between circRNA-disease samples, RPMVCDA constructs the feature similarity association network. Third, RPMVCDA introduces a random perturbation association network to further explore the potential associations, which is the highlight of the RPMVCDA. Finally, based on these three association networks, RPMVCDA utilizes the self-attention mechanism to generate high-quality features for circRNAs and diseases, which are used to calculate association scores. To evaluate the performance of RPMVCDA, five-fold cross-validation and case studies on the CircR2Disease dataset are performed, results of which shows that RPMVCDA outperforms the compared models, implying that it might be an alternative for predicting circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大方安白发布了新的文献求助10
1秒前
liii发布了新的文献求助30
1秒前
星辰发布了新的文献求助30
4秒前
风清扬应助粥里采纳,获得30
5秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
5秒前
upupup发布了新的文献求助10
5秒前
纯真小笼包完成签到 ,获得积分10
6秒前
6秒前
BLCER发布了新的文献求助10
6秒前
6秒前
Jackie完成签到,获得积分10
8秒前
脑洞疼应助做的出来采纳,获得10
9秒前
小余同学发布了新的文献求助10
11秒前
刘佳慧发布了新的文献求助10
11秒前
善学以致用应助pppyy采纳,获得10
11秒前
13秒前
13秒前
大方安白完成签到,获得积分10
13秒前
英姑应助敏敏9813采纳,获得10
14秒前
14秒前
可爱的函函应助upupup采纳,获得10
15秒前
热情的土豆完成签到 ,获得积分10
15秒前
ChenYX完成签到,获得积分10
16秒前
徐上进发布了新的文献求助10
17秒前
可爱的函函应助你找谁哇采纳,获得10
17秒前
18秒前
爆米花应助风语过采纳,获得10
18秒前
18秒前
freq完成签到 ,获得积分10
19秒前
ChenYX发布了新的文献求助10
19秒前
momo完成签到 ,获得积分10
22秒前
SpineLY发布了新的文献求助10
23秒前
24秒前
24秒前
dingmeijia给dingmeijia的求助进行了留言
24秒前
小刘完成签到,获得积分10
24秒前
充电宝应助一个小柠檬采纳,获得10
25秒前
zebra8848发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352