RPMVCDA: Random Perturbation and Multi-View Graph Convolutional Networks for CircRNA-Disease Association Prediction

计算机科学 图形 随机图 摄动(天文学) 人工智能 理论计算机科学 物理 量子力学
作者
Xin He,Junliang Shang,Daohui Ge,Feng Li,Jin‐Xing Liu
标识
DOI:10.1109/tcbbio.2024.3506615
摘要

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models. In this study, we propose RPMVCDA, a computational model based on random perturbation and multi-view graph convolutional networks (GCNs), to predict circRNA-disease associations. Specifically, RPMVCDA first constructs multiple similarity networks of circRNAs and diseases, applying multi-view GCNs to obtain embedding representations. Second, to enable message passing between circRNA-disease samples, RPMVCDA constructs the feature similarity association network. Third, RPMVCDA introduces a random perturbation association network to further explore the potential associations, which is the highlight of the RPMVCDA. Finally, based on these three association networks, RPMVCDA utilizes the self-attention mechanism to generate high-quality features for circRNAs and diseases, which are used to calculate association scores. To evaluate the performance of RPMVCDA, five-fold cross-validation and case studies on the CircR2Disease dataset are performed, results of which shows that RPMVCDA outperforms the compared models, implying that it might be an alternative for predicting circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
guri发布了新的文献求助30
2秒前
清秀的吐司完成签到,获得积分10
3秒前
wang发布了新的文献求助10
4秒前
chenchenchen发布了新的文献求助10
4秒前
ly完成签到,获得积分20
5秒前
5秒前
yyawkx完成签到 ,获得积分10
6秒前
ly发布了新的文献求助10
7秒前
7秒前
高贵的青槐应助Lindsey采纳,获得10
9秒前
orixero应助Mewo采纳,获得10
10秒前
zz发布了新的文献求助10
10秒前
研友_VZG7GZ应助健忘的飞雪采纳,获得10
11秒前
便宜小师傅完成签到 ,获得积分10
11秒前
归尘发布了新的文献求助10
11秒前
Akim应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
mhl11应助科研通管家采纳,获得10
13秒前
十字丝应助科研通管家采纳,获得40
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
mhl11应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
英俊的铭应助解惑采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
14秒前
mhl11应助科研通管家采纳,获得10
14秒前
香蕉觅云应助ly采纳,获得10
14秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
泥娃娃完成签到,获得积分10
17秒前
17秒前
kuailewuzhu应助范先生采纳,获得10
19秒前
陈洋_复旦大学完成签到,获得积分10
19秒前
19秒前
yuchen发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424