RPMVCDA: Random Perturbation and Multi-View Graph Convolutional Networks for CircRNA-Disease Association Prediction

计算机科学 图形 随机图 摄动(天文学) 人工智能 理论计算机科学 物理 量子力学
作者
Xin He,Junliang Shang,Daohui Ge,Feng Li,Jin‐Xing Liu
标识
DOI:10.1109/tcbbio.2024.3506615
摘要

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models. In this study, we propose RPMVCDA, a computational model based on random perturbation and multi-view graph convolutional networks (GCNs), to predict circRNA-disease associations. Specifically, RPMVCDA first constructs multiple similarity networks of circRNAs and diseases, applying multi-view GCNs to obtain embedding representations. Second, to enable message passing between circRNA-disease samples, RPMVCDA constructs the feature similarity association network. Third, RPMVCDA introduces a random perturbation association network to further explore the potential associations, which is the highlight of the RPMVCDA. Finally, based on these three association networks, RPMVCDA utilizes the self-attention mechanism to generate high-quality features for circRNAs and diseases, which are used to calculate association scores. To evaluate the performance of RPMVCDA, five-fold cross-validation and case studies on the CircR2Disease dataset are performed, results of which shows that RPMVCDA outperforms the compared models, implying that it might be an alternative for predicting circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
包容依琴完成签到,获得积分10
2秒前
2秒前
qiulong发布了新的文献求助10
3秒前
科研通AI5应助爱听歌牛青采纳,获得10
3秒前
zjc完成签到,获得积分20
4秒前
跳跃仙人掌应助pp63采纳,获得50
5秒前
shaohua2011发布了新的文献求助10
6秒前
lulu发布了新的文献求助10
6秒前
刘佳梦完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
科研通AI2S应助巴拉巴拉巴采纳,获得10
8秒前
vante完成签到,获得积分10
9秒前
9秒前
Libra发布了新的文献求助20
10秒前
10秒前
网络复杂发布了新的文献求助10
10秒前
郭晓波发布了新的文献求助10
11秒前
11秒前
铁柱发布了新的文献求助10
12秒前
xiaojiang关注了科研通微信公众号
12秒前
成就紫真完成签到,获得积分10
13秒前
14秒前
心楠完成签到,获得积分10
14秒前
优雅的迎彤完成签到 ,获得积分10
15秒前
俏皮的山水完成签到 ,获得积分10
15秒前
某人金发布了新的文献求助10
15秒前
sjh发布了新的文献求助10
15秒前
白白白发布了新的文献求助10
15秒前
fff123完成签到,获得积分10
15秒前
xuanxuan完成签到 ,获得积分10
16秒前
刘佳梦关注了科研通微信公众号
17秒前
vante发布了新的文献求助10
18秒前
19秒前
酷波er应助科研通管家采纳,获得30
20秒前
墨月白应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732073
求助须知:如何正确求助?哪些是违规求助? 3276483
关于积分的说明 9997274
捐赠科研通 2992006
什么是DOI,文献DOI怎么找? 1641986
邀请新用户注册赠送积分活动 780121
科研通“疑难数据库(出版商)”最低求助积分说明 748700