A Globally Optimized Fault Diagnosis Model Based on Generative Flow Model for Imbalanced Data

生成模型 计算机科学 断层(地质) 流量(数学) 生成语法 数据流模型 人工智能 数学 地质学 机械 地震学 几何学 物理
作者
Junxiong Li,Wenhua Jiao,Yudou Xiong,Xiaoyi Cai,Changfang Guo
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016025-016025
标识
DOI:10.1088/1361-6501/ad8fa4
摘要

Abstract In the actual scenario of fault diagnosis based on deep learning, the diagnosis accuracy is often affected by the lack of fault state data, so the processing of imbalanced data is always a significant challenge. generative adversarial networks (GAN) and denoising diffusion probability models (DDPM) are widely used for data augmentation. However, GAN often shows sensitivity and instability in the training process, and the sample generation speed of DDPM is slow due to the steps requiring multiple iterations–both of which are limiting factors. To solve these problems, we introduce the generative flow network with invertible 1 × 1 convolutions (GLOW) into fault diagnosis. The GLOW model is optimized by maximum likelihood estimation and does not require multiple iterations to generate samples, avoiding the problems faced by GAN and DDPM. In order to generate balanced data explicitly, we propose a condition GLOW (CGLOW) to provide class-balanced samples in real time throughout the framework. On the other hand, using the reversibility of CGLOW, we design an end-to-end fault diagnosis framework that is globally optimized to mitigate the decline in diagnostic accuracy caused by the separation of generation and diagnosis and simplify the steps of fault diagnosis. In addition, to accommodate the non-stationary characteristics of fault signals, we propose a new data transformation method to improve the feature mining ability of the model and the diagnostic accuracy. Finally, we conduct extensive experiments to validate the superiority of the proposed approach. The experimental results demonstrate that our method outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaosee发布了新的文献求助10
1秒前
Hannahcx完成签到,获得积分10
1秒前
YANGVV完成签到 ,获得积分10
2秒前
chiech给chiech的求助进行了留言
2秒前
2秒前
3秒前
机智初夏发布了新的文献求助10
3秒前
尊敬怀薇完成签到,获得积分10
4秒前
4秒前
4秒前
小精灵发布了新的文献求助30
5秒前
xu发布了新的文献求助30
5秒前
5秒前
感动城完成签到,获得积分10
6秒前
文静的白开水完成签到,获得积分10
6秒前
LYSM完成签到,获得积分0
6秒前
6秒前
JHGG应助诶呀采纳,获得30
7秒前
矮小的雅香完成签到,获得积分10
7秒前
快乐仙知完成签到 ,获得积分10
7秒前
8秒前
hd完成签到,获得积分10
8秒前
集力申完成签到,获得积分10
9秒前
9秒前
9秒前
sunshine发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
善学以致用应助刘杨采纳,获得10
11秒前
氕氘氚发布了新的文献求助10
11秒前
qiangxu发布了新的文献求助30
11秒前
CipherSage应助霜打了的葡萄采纳,获得10
12秒前
cBOBBY发布了新的文献求助10
12秒前
科研通AI5应助小新采纳,获得10
13秒前
13秒前
qq发布了新的文献求助10
13秒前
泥撑发布了新的文献求助10
13秒前
奶桃七七发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756148
求助须知:如何正确求助?哪些是违规求助? 3299357
关于积分的说明 10109848
捐赠科研通 3013911
什么是DOI,文献DOI怎么找? 1655353
邀请新用户注册赠送积分活动 789722
科研通“疑难数据库(出版商)”最低求助积分说明 753415