Machine learning prediction of early recurrence after surgery for gallbladder cancer

医学 胆囊癌 队列 逻辑回归 接收机工作特性 胆囊 癌症 内科学 曲线下面积 比例危险模型 外科 胃肠病学
作者
Giovanni Catalano,Laura Alaimo,Odysseas P. Chatzipanagiotou,Andrea Ruzzenente,Federico Aucejo,Hugo P. Marques,Vincent Lam,Tom Hugh,Nazim Bhimani,Shishir K. Maithel,Minoru Kitago,Itaru Endo,Timothy M. Pawlik
出处
期刊:British Journal of Surgery 卷期号:111 (11)
标识
DOI:10.1093/bjs/znae297
摘要

Abstract Background Gallbladder cancer is often associated with poor prognosis, especially when patients experience early recurrence after surgery. Machine learning may improve prediction accuracy by analysing complex non-linear relationships. The aim of this study was to develop and evaluate a machine learning model to predict early recurrence risk after resection of gallbladder cancer. Methods In this cross-sectional study, patients who underwent resection of gallbladder cancer with curative intent between 2001 and 2022 were identified using an international database. Patients were assigned randomly to a development and an evaluation cohort. Four machine learning models were trained to predict early recurrence (within 12 months) and compared using the area under the receiver operating curve (AUC). Results Among 374 patients, 56 (15.0%) experienced early recurrence; most patients had T1 (51, 13.6%) or T2 (180, 48.1%) disease, and a subset had lymph node metastasis (120, 32.1%). In multivariable Cox analysis, resection margins (HR 2.34, 95% c.i. 1.55 to 3.80; P < 0.001), and greater AJCC T (HR 2.14, 1.41 to 3.25; P < 0.001) and N (HR 1.59, 1.05 to 2.42; P = 0.029) categories were independent predictors of early recurrence. The random forest model demonstrated the highest discrimination in the evaluation cohort (AUC 76.4, 95% c.i. 66.3 to 86.5), compared with XGBoost (AUC 74.4, 53.4 to 85.3), support vector machine (AUC 67.2, 54.4 to 80.0), and logistic regression (AUC 73.1, 60.6 to 85.7), as well as good accuracy after bootstrapping validation (AUC 75.3, 75.0 to 75.6). Patients classified as being at high versus low risk of early recurrence had much worse overall survival (36.1 versus 63.8% respectively; P < 0.001). An easy-to-use calculator was made available (https://catalano-giovanni.shinyapps.io/GallbladderER). Conclusion Machine learning-based prediction of early recurrence after resection of gallbladder cancer may help stratify patients, as well as help inform postoperative adjuvant therapy and surveillance strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小昼完成签到 ,获得积分10
刚刚
尊敬的完成签到,获得积分10
1秒前
1秒前
整齐海秋完成签到,获得积分10
1秒前
1秒前
善学以致用应助白榆采纳,获得10
1秒前
JamesPei应助易达采纳,获得10
2秒前
2秒前
2秒前
圣晟胜发布了新的文献求助10
2秒前
xx发布了新的文献求助10
3秒前
忧郁觅柔完成签到 ,获得积分10
3秒前
追寻夜香发布了新的文献求助10
3秒前
昊康好完成签到,获得积分10
3秒前
4秒前
yy完成签到,获得积分10
4秒前
5秒前
缓慢天抒完成签到 ,获得积分10
5秒前
科研通AI5应助路之遥兮采纳,获得10
5秒前
爱睡觉的亮亮完成签到,获得积分10
6秒前
圈圈发布了新的文献求助10
6秒前
顾矜应助无聊先知采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
咕咕咕完成签到,获得积分10
7秒前
经法发布了新的文献求助10
8秒前
晚亭完成签到,获得积分10
8秒前
欲望被鬼举报戚薇求助涉嫌违规
9秒前
yangyang发布了新的文献求助10
9秒前
优雅的琳发布了新的文献求助10
10秒前
时光发布了新的文献求助10
10秒前
yuki完成签到,获得积分10
10秒前
南逸然完成签到,获得积分10
10秒前
10秒前
11秒前
HongJiang发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678