Machine learning prediction of early recurrence after surgery for gallbladder cancer

医学 胆囊癌 队列 逻辑回归 接收机工作特性 胆囊 癌症 内科学 曲线下面积 比例危险模型 外科 胃肠病学
作者
Giovanni Catalano,Laura Alaimo,Odysseas P. Chatzipanagiotou,Andrea Ruzzenente,Federico Aucejo,Hugo P. Marques,Vincent Lam,Tom Hugh,Nazim Bhimani,Shishir K. Maithel,Minoru Kitago,Itaru Endo,Timothy M. Pawlik
出处
期刊:British Journal of Surgery 卷期号:111 (11)
标识
DOI:10.1093/bjs/znae297
摘要

Abstract Background Gallbladder cancer is often associated with poor prognosis, especially when patients experience early recurrence after surgery. Machine learning may improve prediction accuracy by analysing complex non-linear relationships. The aim of this study was to develop and evaluate a machine learning model to predict early recurrence risk after resection of gallbladder cancer. Methods In this cross-sectional study, patients who underwent resection of gallbladder cancer with curative intent between 2001 and 2022 were identified using an international database. Patients were assigned randomly to a development and an evaluation cohort. Four machine learning models were trained to predict early recurrence (within 12 months) and compared using the area under the receiver operating curve (AUC). Results Among 374 patients, 56 (15.0%) experienced early recurrence; most patients had T1 (51, 13.6%) or T2 (180, 48.1%) disease, and a subset had lymph node metastasis (120, 32.1%). In multivariable Cox analysis, resection margins (HR 2.34, 95% c.i. 1.55 to 3.80; P < 0.001), and greater AJCC T (HR 2.14, 1.41 to 3.25; P < 0.001) and N (HR 1.59, 1.05 to 2.42; P = 0.029) categories were independent predictors of early recurrence. The random forest model demonstrated the highest discrimination in the evaluation cohort (AUC 76.4, 95% c.i. 66.3 to 86.5), compared with XGBoost (AUC 74.4, 53.4 to 85.3), support vector machine (AUC 67.2, 54.4 to 80.0), and logistic regression (AUC 73.1, 60.6 to 85.7), as well as good accuracy after bootstrapping validation (AUC 75.3, 75.0 to 75.6). Patients classified as being at high versus low risk of early recurrence had much worse overall survival (36.1 versus 63.8% respectively; P < 0.001). An easy-to-use calculator was made available (https://catalano-giovanni.shinyapps.io/GallbladderER). Conclusion Machine learning-based prediction of early recurrence after resection of gallbladder cancer may help stratify patients, as well as help inform postoperative adjuvant therapy and surveillance strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪白的威完成签到,获得积分10
2秒前
彭于晏应助卓头OvQ采纳,获得10
3秒前
筱筱发布了新的文献求助10
5秒前
LuckyGuy发布了新的文献求助10
6秒前
秋意浓发布了新的文献求助10
6秒前
8秒前
kangkirk完成签到,获得积分10
9秒前
昏睡的半莲完成签到 ,获得积分20
10秒前
Ammy给Ammy的求助进行了留言
11秒前
Owen应助科研通管家采纳,获得10
11秒前
从容芮应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
25号底片应助科研通管家采纳,获得20
11秒前
852应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
RW乾发布了新的文献求助10
12秒前
16秒前
科研通AI2S应助调皮的蓝天采纳,获得10
16秒前
着急的平文完成签到,获得积分10
16秒前
18秒前
yan完成签到,获得积分10
19秒前
小丶小丶完成签到,获得积分10
19秒前
23秒前
知涯发布了新的文献求助10
25秒前
今后应助seapowerseries采纳,获得10
27秒前
RW乾完成签到,获得积分10
28秒前
Jasper应助木木三采纳,获得20
29秒前
30秒前
32秒前
caisongliang完成签到,获得积分10
35秒前
xiaolv发布了新的文献求助10
35秒前
YAN完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139078
求助须知:如何正确求助?哪些是违规求助? 2789947
关于积分的说明 7793264
捐赠科研通 2446392
什么是DOI,文献DOI怎么找? 1301085
科研通“疑难数据库(出版商)”最低求助积分说明 626105
版权声明 601102