已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online Monitoring and Fault Early Warning Prediction Method for the Operational Status of Steam Turbine Sliding Pin Systems

汽轮机 涡轮机 可靠性工程 断层(地质) 计算机科学 预警系统 核工程 机械工程 工程类 电信 地质学 地震学
作者
Zongjie Li,Jiakui Shi,Menghui Li,Shuangshuang Fan,Kun Yao,Jie Wan
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad951b
摘要

Abstract In modern power systems, ensuring the safe and reliable operation of the sliding pin system in large steam turbine generator sets is crucial. However, the measurable parameters in the current distributed control system (DCS) are insufficient for fault early detection of the sliding pin system's operational state. Additionally, there is a lack of relevant research in this area at present. This paper utilizes a typical 300MW-class unit as a case study. By analyzing the operational mechanism and fault modes of the sliding pin system, a method for online monitoring of its operational status based on cylinder expansion measurement parameters is proposed. Based on this foundation, taking the advantage of long short -term memory(LSTM) network to effectively extract features from univariate time series, and integrating improved particle swarm optimization(IPSO) for automatic hyperparameter optimization, a multi-step prediction model and fault prediction method for the operational status of sliding pin systems based on IPSO-LSTM is designed. Test results based on various performance evaluation metrics indicate that the IPSO-LSTM algorithm significantly enhances the prediction model's accuracy. Specifically, the TVIWAC-PSO model, which varies the inertia weight (TVIW) and acceleration coefficients (TVAC) simultaneously in the PSO algorithm, optimizes by enhancing global search in the early stages and emphasizing local search in the later stages of iteration. Furthermore, TVIWAC-PSO demonstrates superior performance in optimizing the hyperparameters of the LSTM algorithm. Finally, based on the gap standard between sliding pins and keyway in the actual operating procedures of the unit, combined with the low-pressure cylinder and rotor expansion difference operation standard, thresholds for anomaly detection and early fault prediction of the sliding pin system's operational status are provided. This study holds significant engineering application value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzq发布了新的文献求助20
1秒前
希望天下0贩的0应助Sevi采纳,获得10
1秒前
希望天下0贩的0应助Sevi采纳,获得10
1秒前
闹闹发布了新的文献求助10
2秒前
2秒前
3秒前
内向连碧发布了新的文献求助10
3秒前
可爱的函函应助Wh采纳,获得20
4秒前
4秒前
Gg完成签到,获得积分10
5秒前
5秒前
6秒前
lrl发布了新的文献求助10
6秒前
8秒前
DingShicong发布了新的文献求助10
9秒前
jiyang发布了新的文献求助10
9秒前
10秒前
阿里发布了新的文献求助10
12秒前
12秒前
12秒前
研友_8R3XdL完成签到,获得积分10
12秒前
ww完成签到,获得积分10
13秒前
赵文龙发布了新的文献求助30
15秒前
17秒前
钒V发布了新的文献求助10
17秒前
研友_VZG7GZ应助小木匠采纳,获得10
18秒前
21秒前
闹闹发布了新的文献求助10
21秒前
小罗完成签到,获得积分10
22秒前
巧克力完成签到 ,获得积分10
23秒前
dy发布了新的文献求助80
23秒前
打打应助Xuuuurj采纳,获得10
24秒前
小蘑菇应助阿鹿462采纳,获得10
25秒前
errui发布了新的文献求助20
25秒前
26秒前
26秒前
Du发布了新的文献求助10
28秒前
研友_VZG7GZ应助EMMA采纳,获得10
29秒前
31秒前
wanci应助fantasy采纳,获得10
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491087
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150236
捐赠科研通 2770180
什么是DOI,文献DOI怎么找? 1520177
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196