Development and Field Deployment of a ppb-Level SO2/NO2 Dual-Gas Sensor System for Agricultural Early Fire Identification

二氧化氮 差分吸收光谱 环境科学 分光计 遥感 材料科学 吸收(声学) 光学 气象学 物理 地质学 复合材料
作者
Gangyun Guan,Qiang‐Sheng Wu,Anqi Liu,Mingquan Pi,Fang Song,Jie Zheng,Yiding Wang,Yù Zhang,Xue Bai,Chuantao Zheng
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c02405
摘要

Sulfur dioxide (SO2) and nitrogen dioxide (NO2) are chemical indicators of crop straw combustion as well as significant atmospheric pollutants. It is challenging to promptly detect natural "wildfires" during agricultural production, which often lead to uncontrollable and substantial economic losses. Moreover, both "wildfires" and artificial "straw burning" practices pose severe threats to the ecological environment and human health. Consequently, developing sensors capable of rapid and high-precision quantitative analysis of SO2/NO2 is essential and urgent for detecting early fires in agricultural activities. Here, we demonstrate an incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) sensing system utilizing a 366 nm ultraviolet light emitting diode, designed for real-time, high-precision monitoring of SO2 and NO2 and is used for early fire detection validation. The optical resonant cavity is constructed within a 60 mm cage system mechanical structure, achieving a maximum optical path length of nearly 2 km with a length of ∼460 mm. The output light carrying information about the species and concentration of the analyte molecules is coupled into the miniaturized grating spectrometer via a fiber, and continuous spectral fitting and concentration inversion are performed on the computer. We propose a spectral analysis and concentration inversion model based on an improved particle swarm optimization-support vector machine (IPSO-SVM) algorithm. By discrimination of the absorption spectral characteristics of SO2/NO2, we achieve superior prediction accuracy. Experimental results indicate that the detection limits of SO2 and NO2 under the optimized averaging time are 77.5 parts per billion by volume (ppbv) and 0.037 ppbv, respectively. The field deployment of the sensor in scenarios such as continuous outdoor air pollution monitoring, in situ combustion feature identification, and early fire mobile detection has demonstrated the superior reliability and sensitivity of this sensor system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
残幻应助科研通管家采纳,获得10
1秒前
wind完成签到,获得积分20
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
懒羊羊大王完成签到 ,获得积分10
2秒前
大个应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
3秒前
残幻应助科研通管家采纳,获得10
3秒前
3秒前
ddp发布了新的文献求助50
3秒前
欧阳静芙完成签到 ,获得积分10
3秒前
隐形的雨雪完成签到 ,获得积分10
3秒前
起风了发布了新的文献求助10
4秒前
英姑应助温婉的香菇采纳,获得10
4秒前
5秒前
6秒前
洛苏完成签到,获得积分10
6秒前
小二郎应助酷炫的八宝粥采纳,获得10
6秒前
Owen应助xh采纳,获得10
7秒前
莲枳榴莲完成签到,获得积分10
7秒前
brittany发布了新的文献求助10
8秒前
bkagyin应助yaya采纳,获得10
8秒前
pain豆先生完成签到 ,获得积分10
9秒前
123发布了新的文献求助10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427