On the role of local reinforcement in an adhesively bonded AL/CFRP energy absorber under axial loading: A theoretical investigation and optimization

材料科学 钢筋 复合材料 能量(信号处理) 结构工程 工程类 物理 量子力学
作者
Reza Rahmani,Ali Keshavarzi,Hamed Saeidi Googarchin
出处
期刊:Polymer Composites [Wiley]
被引量:5
标识
DOI:10.1002/pc.29184
摘要

Abstract This paper aims to develop a novel theoretical model that incorporates the effects of local composite reinforcement using adhesive bonding on the energy absorption of aluminum structures under axial loading. The goal is to optimize energy absorption prior to any connection failures and to prevent uneven structural deformation. Moreover, it strives to reduce the structure's weight and material usage, achieving superior results compared to traditional global reinforcement techniques. The theoretical model was validated through experimental testing and finite element analysis, demonstrating good agreement with the predicted results. The results reveal that increasing the CFRP fiber angle, layer thickness, and number of layers generally leads to improved energy absorption capacity. An optimization analysis was performed to determine the optimal design parameters, yielding a fiber angle of 80°–90°, composite thickness of 1.5 mm, and aluminum thickness of 2.5 is the best configuration, offering the highest specific energy absorption and adequate peak load capacity for maximized energy absorption. The proposed model offers significant improvements over existing approaches, enhancing the predictive capabilities and practical applicability of energy absorption predictions in engineering design. Highlights A novel theoretical model for energy absorption in locally reinforced hybrid AL/CFRP structures. The influence of design parameters, such as CFRP layer count, fiber orientation, and thickness ratio. Optimization to maximize the average crushing force while meeting weight and geometric constraints. Findings can inform the design of safer and more efficient energy‐absorbing structures in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煜钧发布了新的文献求助10
刚刚
开心栾完成签到 ,获得积分10
1秒前
天天快乐应助年轻迪奥采纳,获得10
1秒前
bellaluna完成签到,获得积分10
1秒前
0713发布了新的文献求助10
2秒前
犹豫海白完成签到,获得积分10
2秒前
LOVEMEVOL发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
有何丿不可应助丸子采纳,获得20
3秒前
23完成签到,获得积分10
3秒前
西柚完成签到,获得积分10
3秒前
喜悦成威应助mudiboyang采纳,获得10
3秒前
juju完成签到,获得积分10
3秒前
科研通AI5应助小羊烧鸡采纳,获得30
4秒前
侠女发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
潇洒的冰淇淋完成签到,获得积分10
6秒前
7秒前
一一完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
TLJDZ完成签到,获得积分10
9秒前
理查德发布了新的文献求助10
10秒前
科研通AI5应助忧郁的平安采纳,获得10
10秒前
10秒前
素律完成签到,获得积分10
10秒前
wangwenzhe发布了新的文献求助10
11秒前
chanbao发布了新的文献求助20
12秒前
12秒前
12秒前
iiing发布了新的文献求助10
14秒前
Orange应助内向平萱采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
Nari发布了新的文献求助10
15秒前
万能图书馆应助贤惠的松采纳,获得10
16秒前
16秒前
今何在发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771