Prediction of Exchange Bias for Magnetic Heterostructure Nanoparticles with Machine Learning

交换偏差 纳米颗粒 材料科学 磁铁 矫顽力 异质结 磁性纳米粒子 计算机科学 纳米技术 凝聚态物理 磁场 机器学习 机械工程 光电子学 磁化 物理 磁各向异性 工程类 量子力学
作者
Ksenya A. Kapranova,Julia Razlivina,Andrei Dmitrenko,Daniil V. Kladko,Vladimir V. Vinogradov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
标识
DOI:10.1021/acs.jpcc.4c07028
摘要

Exchange bias is essential for the stability and control of nanoparticles' magnetic properties for their application as rare-earth-free permanent magnet, magnetic storage, magnetic hyperthermia, and catalysis. Core–shell structures of magnetic bimagnetic particles have garnered increasing interest due to their larger coercive and exchange bias fields, tunable blocking temperatures, and enhanced Neel temperature. However, the design approach of nanoparticles with exchange bias using a computational method has a high computational cost and offers limited efficiency in predicting complex core–shell nanoparticle systems. Machine learning (ML) predictions provide a transformative approach to the design and optimization of materials with desirable exchange bias (EB) properties by offering rapid and precise evaluations of material compositions and configurations. This study addresses this gap by developing an ML model for the prediction of EB field in magnetic nanoparticles, which provide a fast and effective alternative for traditional computational methods. Hence, comparative analysis of ML models, including the Kolmogorov-Arnold Network (KAN), is for predicting EB in core–shell and heterostructure nanoparticles. Among the predictive models, XGBoost demonstrated superior performance, achieving R2 values of 0.74 and 0.75 on the test and validation data sets, respectively. KAN showed reduced generalization power with the R2 test of 0.67 but was more accurate in predicting high values of the EB. The Shapley additive explanation (SHAP) analysis revealed unexpected dependencies between nanoparticle properties and magnetic behavior, offering new insights for optimizing a material design. These findings are highly relevant for developing materials for rare-earth-free permanent magnets, magnetic storage, magnetic hyperthermia, and catalysis, where precise control of magnetic properties is crucial.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乐发布了新的文献求助10
刚刚
Q清风慕竹发布了新的文献求助10
1秒前
1秒前
nojivv完成签到,获得积分10
1秒前
Litm完成签到 ,获得积分10
2秒前
3秒前
kita完成签到,获得积分10
3秒前
qzj完成签到,获得积分10
3秒前
4秒前
LIKUN完成签到,获得积分10
4秒前
用心若镜2完成签到,获得积分10
5秒前
marry完成签到,获得积分10
6秒前
褪色发布了新的文献求助10
7秒前
枫落无霜发布了新的文献求助10
8秒前
8秒前
marry发布了新的文献求助10
9秒前
用心若镜2发布了新的文献求助10
9秒前
Jackie发布了新的文献求助10
13秒前
susu完成签到,获得积分10
16秒前
上官若男应助枫落无霜采纳,获得10
17秒前
21秒前
22秒前
7123完成签到,获得积分20
23秒前
酷波er应助尘南浔采纳,获得10
24秒前
26秒前
GSQ发布了新的文献求助10
26秒前
丘比特应助caicai采纳,获得10
26秒前
lin发布了新的文献求助10
27秒前
书包王完成签到,获得积分10
27秒前
28秒前
921发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
深情世立发布了新的文献求助10
29秒前
忐忑的天真完成签到 ,获得积分10
31秒前
Amiee发布了新的文献求助10
32秒前
Akim应助GSQ采纳,获得10
33秒前
33秒前
MeSs完成签到 ,获得积分10
33秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611