摩擦电效应
纳米发生器
材料科学
内阻
电容
静电感应
电容器
能量收集
光电子学
电气工程
电压
能量(信号处理)
压电
功率(物理)
物理
电极
电池(电)
工程类
复合材料
量子力学
作者
Xin Guo,Yuqi Wang,Yuming Feng,Yang Yu,Jianlong Wang,Siyang He,Jinzhi Zhu,Hengyu Li,Tinghai Cheng,Zhong Lin Wang,Xiaojun Cheng
标识
DOI:10.1002/aenm.202405116
摘要
Abstract Traditional triboelectric nanogenerators (TENGs) face significant challenges related to low charge density and high internal impedance. Many methods have been proposed to enhance the surface charge density of TENGs, yet they do not simultaneously achieve low internal resistance. Here, a switch‐shuttling triboelectric nanogenerator (SS‐TENG) is proposed. By periodically interrupting the circuit during the intrinsic capacitance variation of the TENG during the charge shuttle process, the SS‐TENG alters the potential difference while maintaining a constant charge in the capacitor, thereby enhancing energy storage and improving overall output performance. The rapid activation of the switch significantly reduces internal resistance. Compared to traditional charge shuttle TENGs, the charge transfer amount increases by 1.9 times, while the short‐circuit current rises by 9.6 times, with internal resistance reduced by a factor of 20. Furthermore, a prototype of the novel cylindrical‐hexagram bluff body (CHB) vortex‐induced vibration energy harvester based on the SS‐TENG is designed and tested, demonstrating its ability to reliably harvest energy from underwater tidal flows and surface wave energy. Additionally, a self‐powered marine pollution detection strategy has been developed using the SS‐TENG. This work provides valuable insights for enhancing the performance of TENGs and actively promotes their commercialization.
科研通智能强力驱动
Strongly Powered by AbleSci AI