Doped‐NiOx Seed Layer on Textured Substrates for Low‐Loss Contacts in Perovskite Solar Cells

材料科学 非阻塞I/O 钝化 光电流 光电子学 钙钛矿(结构) 能量转换效率 光伏 氧化镍 纳米技术 光伏系统 图层(电子) 氧化物 化学工程 生态学 生物化学 化学 工程类 冶金 生物 催化作用
作者
Zhixin Feng,Minwoo Lee,Ruoming Tian,Robert Patterson,Yu Wang,Chen Qian,Kaiwen Sun,Ziheng Liu,Jae Sung Yun,Menglei Xu,Xinyu Zhang,Hao Jin,Martin A. Green,Mingrui He,Zhen Li,Xiaojing Hao
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202405016
摘要

Abstract Further improvements in photocurrent are essential to unlock higher efficiencies in inverted (p‐i‐n) perovskite solar cells (PSCs). While the use of textured substrates has proven successful in normal structure (n‐i‐p) devices to improve photocurrent, applying the same approach to p‐i‐n architecture is challenging due to difficulties in depositing ultra‐thin self‐assembled monolayers (SAMs) on uneven surfaces. To overcome this limitation, a rubidium‐based ammonia treatment for nickel oxide seed layers is proposed. This strategy enhances the surface homogeneity of hole‐transporting layers on textured substrates, facilitates perovskite defect passivation, and improves SAM anchoring, collectively enhancing hole extraction and suppressing non‐radiative recombination. As a result, the optimized PSCs achieves a champion power conversion efficiency (PCE) of 25.66% with a fill factor of 86.35% and demonstrates excellent long‐term stability, retaining 95% of their initial PCE after 1,000 hours following ISOS‐L‐2I protocol. Moreover, the scalability of this approach is validated with a 1 cm 2 active area device, achieving a PCE of 23.90%. These findings highlight the potential of the strategy to address key challenges in PSC interfaces and advance the commercial viability of high‐performance perovskite photovoltaics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanzhanzhan发布了新的文献求助10
刚刚
科研通AI5应助自爱悠然采纳,获得10
刚刚
刚刚
Accept应助胡枝子采纳,获得30
刚刚
Strike发布了新的文献求助10
1秒前
Rsoup完成签到,获得积分10
1秒前
2秒前
zz发布了新的文献求助10
2秒前
sfzz完成签到,获得积分10
2秒前
2秒前
如履平川完成签到 ,获得积分10
2秒前
大个应助阳光海云采纳,获得50
2秒前
2秒前
新青年完成签到,获得积分0
2秒前
2秒前
现代的又柔应助研友_8yN60L采纳,获得10
3秒前
3秒前
李健应助傲娇的云朵采纳,获得10
3秒前
3秒前
3秒前
liudiqiu完成签到,获得积分10
3秒前
Akashi完成签到,获得积分10
3秒前
风中珩完成签到 ,获得积分10
4秒前
LIU发布了新的文献求助10
4秒前
4秒前
李知恩完成签到,获得积分10
5秒前
5秒前
EthanChan完成签到,获得积分10
5秒前
5秒前
野性的孤菱完成签到,获得积分10
5秒前
茂密的头发完成签到,获得积分10
6秒前
6秒前
Hongsong发布了新的文献求助10
7秒前
勤恳马里奥完成签到,获得积分0
8秒前
8秒前
yzy发布了新的文献求助10
8秒前
9秒前
9秒前
科目三应助AA采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740