Anhydrous Solid-State Proton Conduction in Crystalline MOFs, COFs, HOFs, and POMs

化学 无水的 固态 质子 化学工程 物理化学 有机化学 物理 量子力学 工程类
作者
Debolina Mukherjee,Apu Saha,S. M. Fuad Kabir Moni,Dirk Volkmer,Madhab C. Das
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c14029
摘要

Strategic design of solid-state proton-conducting electrolytes for application in anhydrous proton-exchange membrane fuel cells (PEMFCs) has gained burgeoning interest due to a spectrum of advantageous features, including higher CO tolerance and ease in the water management systems. Toward this direction, crystalline materials like metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and polyoxometalates (POMs) are emerging PEM materials, offering strategic structural engineering through crystallography, thus enabling ultrahigh anhydrous proton conductivity up to 10-2-10-1 S/cm. This Perspective highlights significant progress achieved thus far with such crystalline platforms in the domain of anhydrous proton conduction across a wide temperature window (sub-zero to above 100 °C). Based on their structural backgrounds, these platforms are categorized into four classes (viz. MOFs, COFs, HOFs, and POMs) with a detailed evolutionary timeline since their emergence early in 2009. Insightful discussions with a key focus on the strategies undertaken to attain anhydrous proton conductivity along with implementation in fuel cell technology through membrane electrode assembly are presented. A section on "Critical Analysis and Future Prospects" provides decisive key viewpoints on those overlooked issues with future endorsement (e.g., performance assessment with CO tolerance analysis and fuel cell test stand) for further development while comparing them with other anhydrous platforms from both academic and industrial perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
齐路明完成签到,获得积分10
1秒前
cleva发布了新的文献求助10
1秒前
lilizj完成签到,获得积分10
1秒前
刘老师完成签到 ,获得积分10
2秒前
田様应助肖恩采纳,获得10
2秒前
奇点发布了新的文献求助10
2秒前
米玄发布了新的文献求助10
2秒前
jojo完成签到,获得积分10
3秒前
huohuo发布了新的文献求助10
3秒前
唬旌关注了科研通微信公众号
3秒前
3秒前
4秒前
4秒前
无花果应助沧海一粟米采纳,获得10
5秒前
宝贝丫头完成签到 ,获得积分10
5秒前
6秒前
肖礼成完成签到,获得积分10
6秒前
善学以致用应助小东西采纳,获得10
6秒前
6秒前
小章鱼完成签到 ,获得积分10
6秒前
7秒前
马大翔完成签到,获得积分0
7秒前
黑豆也完成签到,获得积分10
8秒前
aqz关闭了aqz文献求助
8秒前
丶Dawn完成签到,获得积分0
8秒前
自由的亦旋完成签到,获得积分10
8秒前
LHL发布了新的文献求助10
9秒前
9秒前
甜甜的元瑶完成签到,获得积分10
9秒前
9秒前
10秒前
勤劳尔琴发布了新的文献求助20
10秒前
10秒前
Linly发布了新的文献求助10
10秒前
郝薇薇薇薇儿完成签到,获得积分20
10秒前
10秒前
hhhh发布了新的文献求助10
10秒前
cleva完成签到,获得积分10
11秒前
不才发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365