Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT)

医学 头颈部癌 放射治疗 核医学 放射治疗计划 放射科 外科
作者
Dongrong Yang,Xin Wu,Xinyi Li,R. Mansfield,Yibo Xie,Q Wu,Q Wu,Yang Sheng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad965d
摘要

Abstract Purpose:&#xD;To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system (TPS) to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-risk (OAR) sparing performance.&#xD;Methods:&#xD;With IRB approval, one hundred and twenty HN patients receiving IMRT were included. The DRL agent was trained with 20 patients. During each inverse optimization process, the intermediate dosimetric endpoints’ value, dose volume constraints value and structure objective function loss were collected as the DRL states. By adjusting the objective constraints as actions, the agent learned to seek optimal rewards by balancing OAR sparing and planning target volume (PTV) coverage. Reward computed from current dose-volume-histogram (DVH) endpoints and clinical objectives were sent back to the agent to update action policy during model training. The trained agent was evaluated with the rest 100 patients. &#xD;Results:&#xD;The DRL agent was able to generate a clinically acceptable IMRT plan within 12.4±3.1 minutes without human intervention. DRL plans showed lower PTV maximum dose (109.2%) compared to clinical plans (112.4%) (p<.05). Average median dose of left parotid, right parotid, oral cavity, larynx, pharynx of DRL plans were 15.6Gy, 12.2Gy, 25.7Gy, 27.3Gy and 32.1Gy respectively, comparable to 17.1 Gy,15.7Gy, 24.4Gy, 23.7Gy and 35.5Gy of corresponding clinical plans. The maximum dose of cord+5mm, brainstem and mandible were also comparable between the two groups. In addition, DRL plans demonstrated reduced variability, as evidenced by smaller 95% confidence intervals. The total MU of the DRL plans was 1611 vs 1870 (p<.05) of clinical plans. The results signaled the DRL's consistent planning strategy compared to the planners' occasional back-and-forth decision-making during planning.&#xD;Conclusion:&#xD;The proposed deep reinforcement learning (DRL) agent is capable of efficiently generating HN IMRT plans with consistent quality. &#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人的小土豆完成签到,获得积分10
刚刚
huihui完成签到,获得积分10
1秒前
1秒前
1秒前
天马行空发布了新的文献求助10
1秒前
腾腾腾发布了新的文献求助10
1秒前
璐宝完成签到,获得积分10
1秒前
温暖的蚂蚁完成签到 ,获得积分10
1秒前
2秒前
喜之郎完成签到,获得积分10
2秒前
顾矜应助xiaoguai采纳,获得10
2秒前
赘婿应助Linnea-Xu采纳,获得10
2秒前
小蘑菇应助小泡芙采纳,获得10
3秒前
Moriarty完成签到,获得积分10
3秒前
深情安青应助fannie采纳,获得10
3秒前
shen完成签到 ,获得积分10
3秒前
Ane.Z完成签到,获得积分10
3秒前
FX1688完成签到 ,获得积分10
3秒前
jelly完成签到,获得积分10
4秒前
小吴同学来啦完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
小权拳的权完成签到,获得积分10
4秒前
神奇海螺完成签到,获得积分10
4秒前
大模型应助奶冻采纳,获得10
5秒前
852应助开心的饼干采纳,获得10
5秒前
ppat5012发布了新的文献求助10
5秒前
cyy完成签到,获得积分10
5秒前
yyyyy完成签到,获得积分10
5秒前
Wangyingjie5发布了新的文献求助10
5秒前
5秒前
5秒前
哲999完成签到,获得积分10
6秒前
DADing完成签到,获得积分10
6秒前
三杠完成签到 ,获得积分10
6秒前
6秒前
Belinda发布了新的文献求助10
6秒前
爱听歌的听云完成签到,获得积分10
6秒前
鲤鱼一鸣完成签到,获得积分10
7秒前
Jenny完成签到,获得积分10
7秒前
huofuman完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959