Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT)

医学 头颈部癌 放射治疗 核医学 放射治疗计划 放射科 外科
作者
Dongrong Yang,Xin Wu,Xinyi Li,R. Mansfield,Yibo Xie,Q Wu,Q Wu,Yang Sheng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad965d
摘要

Abstract Purpose:&#xD;To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system (TPS) to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-risk (OAR) sparing performance.&#xD;Methods:&#xD;With IRB approval, one hundred and twenty HN patients receiving IMRT were included. The DRL agent was trained with 20 patients. During each inverse optimization process, the intermediate dosimetric endpoints’ value, dose volume constraints value and structure objective function loss were collected as the DRL states. By adjusting the objective constraints as actions, the agent learned to seek optimal rewards by balancing OAR sparing and planning target volume (PTV) coverage. Reward computed from current dose-volume-histogram (DVH) endpoints and clinical objectives were sent back to the agent to update action policy during model training. The trained agent was evaluated with the rest 100 patients. &#xD;Results:&#xD;The DRL agent was able to generate a clinically acceptable IMRT plan within 12.4±3.1 minutes without human intervention. DRL plans showed lower PTV maximum dose (109.2%) compared to clinical plans (112.4%) (p<.05). Average median dose of left parotid, right parotid, oral cavity, larynx, pharynx of DRL plans were 15.6Gy, 12.2Gy, 25.7Gy, 27.3Gy and 32.1Gy respectively, comparable to 17.1 Gy,15.7Gy, 24.4Gy, 23.7Gy and 35.5Gy of corresponding clinical plans. The maximum dose of cord+5mm, brainstem and mandible were also comparable between the two groups. In addition, DRL plans demonstrated reduced variability, as evidenced by smaller 95% confidence intervals. The total MU of the DRL plans was 1611 vs 1870 (p<.05) of clinical plans. The results signaled the DRL's consistent planning strategy compared to the planners' occasional back-and-forth decision-making during planning.&#xD;Conclusion:&#xD;The proposed deep reinforcement learning (DRL) agent is capable of efficiently generating HN IMRT plans with consistent quality. &#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w0304hf完成签到,获得积分10
刚刚
星川完成签到,获得积分10
3秒前
jiaozitop完成签到,获得积分10
3秒前
本本完成签到 ,获得积分10
5秒前
zjy完成签到,获得积分10
11秒前
甜蜜耳机完成签到 ,获得积分10
11秒前
MchemG应助ho采纳,获得30
17秒前
wing完成签到 ,获得积分10
17秒前
浮游应助猪猪hero采纳,获得10
19秒前
mafukairi应助猪猪hero采纳,获得10
19秒前
风中冰香应助猪猪hero采纳,获得10
19秒前
santory应助猪猪hero采纳,获得10
19秒前
彭于晏应助猪猪hero采纳,获得10
19秒前
浮游应助猪猪hero采纳,获得10
20秒前
wanci应助猪猪hero采纳,获得30
20秒前
20秒前
20秒前
绿鬼蓝完成签到 ,获得积分10
21秒前
25秒前
猪猪hero发布了新的文献求助30
29秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
小离应助科研通管家采纳,获得10
31秒前
LPPQBB应助科研通管家采纳,获得150
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
31秒前
缓慢耳机完成签到,获得积分20
34秒前
xiaofenzi完成签到,获得积分10
37秒前
38秒前
Johnlian完成签到 ,获得积分10
38秒前
猪猪hero发布了新的文献求助10
42秒前
南风完成签到 ,获得积分10
44秒前
无心客应助小杨采纳,获得50
45秒前
45秒前
幼儿园老大完成签到 ,获得积分10
48秒前
49秒前
MchemG应助ho采纳,获得30
50秒前
john完成签到 ,获得积分10
52秒前
苹果大侠完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751