亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT)

医学 头颈部癌 放射治疗 核医学 放射治疗计划 放射科 外科
作者
Dongrong Yang,Xin Wu,Xinyi Li,R. Mansfield,Yibo Xie,Q Wu,Q Wu,Yang Sheng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad965d
摘要

Abstract Purpose:&#xD;To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system (TPS) to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-risk (OAR) sparing performance.&#xD;Methods:&#xD;With IRB approval, one hundred and twenty HN patients receiving IMRT were included. The DRL agent was trained with 20 patients. During each inverse optimization process, the intermediate dosimetric endpoints’ value, dose volume constraints value and structure objective function loss were collected as the DRL states. By adjusting the objective constraints as actions, the agent learned to seek optimal rewards by balancing OAR sparing and planning target volume (PTV) coverage. Reward computed from current dose-volume-histogram (DVH) endpoints and clinical objectives were sent back to the agent to update action policy during model training. The trained agent was evaluated with the rest 100 patients. &#xD;Results:&#xD;The DRL agent was able to generate a clinically acceptable IMRT plan within 12.4±3.1 minutes without human intervention. DRL plans showed lower PTV maximum dose (109.2%) compared to clinical plans (112.4%) (p<.05). Average median dose of left parotid, right parotid, oral cavity, larynx, pharynx of DRL plans were 15.6Gy, 12.2Gy, 25.7Gy, 27.3Gy and 32.1Gy respectively, comparable to 17.1 Gy,15.7Gy, 24.4Gy, 23.7Gy and 35.5Gy of corresponding clinical plans. The maximum dose of cord+5mm, brainstem and mandible were also comparable between the two groups. In addition, DRL plans demonstrated reduced variability, as evidenced by smaller 95% confidence intervals. The total MU of the DRL plans was 1611 vs 1870 (p<.05) of clinical plans. The results signaled the DRL's consistent planning strategy compared to the planners' occasional back-and-forth decision-making during planning.&#xD;Conclusion:&#xD;The proposed deep reinforcement learning (DRL) agent is capable of efficiently generating HN IMRT plans with consistent quality. &#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑞雪完成签到,获得积分10
7秒前
9秒前
22秒前
31秒前
34秒前
Cmqq发布了新的文献求助10
35秒前
充电宝应助zhouxunnjau采纳,获得10
37秒前
果果发布了新的文献求助10
41秒前
所所应助Cmqq采纳,获得10
44秒前
小马甲应助吱吱草莓派采纳,获得10
50秒前
欣喜秋天完成签到,获得积分20
51秒前
领导范儿应助吱吱草莓派采纳,获得10
1分钟前
1分钟前
大牛牛完成签到,获得积分10
1分钟前
过眼云烟完成签到,获得积分10
1分钟前
求学发布了新的文献求助10
1分钟前
1分钟前
clickable发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
佳佳发布了新的文献求助10
1分钟前
果果完成签到,获得积分20
1分钟前
共享精神应助孔踏歌采纳,获得10
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
吃瓜群众完成签到,获得积分10
1分钟前
zhouxunnjau发布了新的文献求助10
1分钟前
小江发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
完美世界应助小江采纳,获得10
2分钟前
求学完成签到,获得积分10
2分钟前
在水一方应助求学采纳,获得10
2分钟前
loser完成签到 ,获得积分10
2分钟前
大模型应助Cmqq采纳,获得10
2分钟前
清浅完成签到 ,获得积分10
2分钟前
zeice完成签到 ,获得积分10
2分钟前
阔达白凡完成签到,获得积分10
2分钟前
2分钟前
美丽的冰枫完成签到,获得积分10
2分钟前
佳佳完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904