Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT)

医学 头颈部癌 放射治疗 核医学 放射治疗计划 放射科 外科
作者
Dongrong Yang,Xin Wu,Xinyi Li,R. Mansfield,Yibo Xie,Q Wu,Q Wu,Yang Sheng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad965d
摘要

Abstract Purpose:&#xD;To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system (TPS) to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-risk (OAR) sparing performance.&#xD;Methods:&#xD;With IRB approval, one hundred and twenty HN patients receiving IMRT were included. The DRL agent was trained with 20 patients. During each inverse optimization process, the intermediate dosimetric endpoints’ value, dose volume constraints value and structure objective function loss were collected as the DRL states. By adjusting the objective constraints as actions, the agent learned to seek optimal rewards by balancing OAR sparing and planning target volume (PTV) coverage. Reward computed from current dose-volume-histogram (DVH) endpoints and clinical objectives were sent back to the agent to update action policy during model training. The trained agent was evaluated with the rest 100 patients. &#xD;Results:&#xD;The DRL agent was able to generate a clinically acceptable IMRT plan within 12.4±3.1 minutes without human intervention. DRL plans showed lower PTV maximum dose (109.2%) compared to clinical plans (112.4%) (p<.05). Average median dose of left parotid, right parotid, oral cavity, larynx, pharynx of DRL plans were 15.6Gy, 12.2Gy, 25.7Gy, 27.3Gy and 32.1Gy respectively, comparable to 17.1 Gy,15.7Gy, 24.4Gy, 23.7Gy and 35.5Gy of corresponding clinical plans. The maximum dose of cord+5mm, brainstem and mandible were also comparable between the two groups. In addition, DRL plans demonstrated reduced variability, as evidenced by smaller 95% confidence intervals. The total MU of the DRL plans was 1611 vs 1870 (p<.05) of clinical plans. The results signaled the DRL's consistent planning strategy compared to the planners' occasional back-and-forth decision-making during planning.&#xD;Conclusion:&#xD;The proposed deep reinforcement learning (DRL) agent is capable of efficiently generating HN IMRT plans with consistent quality. &#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的彩虹完成签到,获得积分10
2秒前
2秒前
剧院的饭桶完成签到,获得积分10
3秒前
3秒前
可爱的函函应助haodian采纳,获得10
3秒前
3秒前
4秒前
小羊完成签到 ,获得积分10
4秒前
brown完成签到,获得积分10
4秒前
所所应助凛冬采纳,获得10
5秒前
5秒前
可乐梅子完成签到,获得积分10
5秒前
tdtk发布了新的文献求助10
6秒前
7秒前
桃核应助wuge采纳,获得10
7秒前
wmy发布了新的文献求助10
7秒前
7秒前
斯文败类应助老薛采纳,获得10
8秒前
救救我把发布了新的文献求助10
8秒前
8秒前
科研通AI6应助范ER采纳,获得10
9秒前
古渡应助秀丽的灵薇采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
qise应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
12秒前
不安向雁应助科研通管家采纳,获得10
12秒前
CR7应助科研通管家采纳,获得20
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
ymjssg应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461037
求助须知:如何正确求助?哪些是违规求助? 4566103
关于积分的说明 14303472
捐赠科研通 4491782
什么是DOI,文献DOI怎么找? 2460462
邀请新用户注册赠送积分活动 1449774
关于科研通互助平台的介绍 1425554