亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT)

医学 头颈部癌 放射治疗 核医学 放射治疗计划 放射科 外科
作者
Dongrong Yang,Xin Wu,Xinyi Li,R. Mansfield,Yibo Xie,Q Wu,Q Wu,Yang Sheng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad965d
摘要

Abstract Purpose:&#xD;To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system (TPS) to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-risk (OAR) sparing performance.&#xD;Methods:&#xD;With IRB approval, one hundred and twenty HN patients receiving IMRT were included. The DRL agent was trained with 20 patients. During each inverse optimization process, the intermediate dosimetric endpoints’ value, dose volume constraints value and structure objective function loss were collected as the DRL states. By adjusting the objective constraints as actions, the agent learned to seek optimal rewards by balancing OAR sparing and planning target volume (PTV) coverage. Reward computed from current dose-volume-histogram (DVH) endpoints and clinical objectives were sent back to the agent to update action policy during model training. The trained agent was evaluated with the rest 100 patients. &#xD;Results:&#xD;The DRL agent was able to generate a clinically acceptable IMRT plan within 12.4±3.1 minutes without human intervention. DRL plans showed lower PTV maximum dose (109.2%) compared to clinical plans (112.4%) (p<.05). Average median dose of left parotid, right parotid, oral cavity, larynx, pharynx of DRL plans were 15.6Gy, 12.2Gy, 25.7Gy, 27.3Gy and 32.1Gy respectively, comparable to 17.1 Gy,15.7Gy, 24.4Gy, 23.7Gy and 35.5Gy of corresponding clinical plans. The maximum dose of cord+5mm, brainstem and mandible were also comparable between the two groups. In addition, DRL plans demonstrated reduced variability, as evidenced by smaller 95% confidence intervals. The total MU of the DRL plans was 1611 vs 1870 (p<.05) of clinical plans. The results signaled the DRL's consistent planning strategy compared to the planners' occasional back-and-forth decision-making during planning.&#xD;Conclusion:&#xD;The proposed deep reinforcement learning (DRL) agent is capable of efficiently generating HN IMRT plans with consistent quality. &#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张靖发布了新的文献求助10
3秒前
lpcxly发布了新的文献求助10
15秒前
焦璐发布了新的文献求助10
43秒前
完美世界应助lpcxly采纳,获得20
56秒前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
焦璐发布了新的文献求助10
1分钟前
Owen应助百里幻竹采纳,获得10
1分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
zxcsdfa应助爱迪小生采纳,获得50
2分钟前
chenlc971125完成签到 ,获得积分10
3分钟前
3分钟前
m赤子心完成签到 ,获得积分10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
毓雅完成签到,获得积分10
3分钟前
4分钟前
倦鸟余花发布了新的文献求助10
4分钟前
lpcxly发布了新的文献求助10
4分钟前
lpcxly发布了新的文献求助10
4分钟前
科研通AI2S应助倦鸟余花采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
Peix完成签到 ,获得积分10
6分钟前
小刚完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Qvby3完成签到 ,获得积分10
7分钟前
焦璐关注了科研通微信公众号
7分钟前
百里幻竹完成签到,获得积分20
8分钟前
8分钟前
焦璐发布了新的文献求助10
8分钟前
今后应助玛卡巴卡马卡采纳,获得10
9分钟前
9分钟前
9分钟前
FashionBoy应助shuikoubl采纳,获得10
9分钟前
9分钟前
玛卡巴卡马卡完成签到,获得积分10
9分钟前
科研通AI2S应助物语采纳,获得10
10分钟前
Akim应助物语采纳,获得10
10分钟前
倦鸟余花完成签到,获得积分10
10分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055176
捐赠科研通 2746944
什么是DOI,文献DOI怎么找? 1507179
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695936