Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT)

医学 头颈部癌 放射治疗 核医学 放射治疗计划 放射科 外科
作者
Dongrong Yang,Xin Wu,Xinyi Li,R. Mansfield,Yibo Xie,Q Wu,Q Wu,Yang Sheng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad965d
摘要

Abstract Purpose:&#xD;To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system (TPS) to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-risk (OAR) sparing performance.&#xD;Methods:&#xD;With IRB approval, one hundred and twenty HN patients receiving IMRT were included. The DRL agent was trained with 20 patients. During each inverse optimization process, the intermediate dosimetric endpoints’ value, dose volume constraints value and structure objective function loss were collected as the DRL states. By adjusting the objective constraints as actions, the agent learned to seek optimal rewards by balancing OAR sparing and planning target volume (PTV) coverage. Reward computed from current dose-volume-histogram (DVH) endpoints and clinical objectives were sent back to the agent to update action policy during model training. The trained agent was evaluated with the rest 100 patients. &#xD;Results:&#xD;The DRL agent was able to generate a clinically acceptable IMRT plan within 12.4±3.1 minutes without human intervention. DRL plans showed lower PTV maximum dose (109.2%) compared to clinical plans (112.4%) (p<.05). Average median dose of left parotid, right parotid, oral cavity, larynx, pharynx of DRL plans were 15.6Gy, 12.2Gy, 25.7Gy, 27.3Gy and 32.1Gy respectively, comparable to 17.1 Gy,15.7Gy, 24.4Gy, 23.7Gy and 35.5Gy of corresponding clinical plans. The maximum dose of cord+5mm, brainstem and mandible were also comparable between the two groups. In addition, DRL plans demonstrated reduced variability, as evidenced by smaller 95% confidence intervals. The total MU of the DRL plans was 1611 vs 1870 (p<.05) of clinical plans. The results signaled the DRL's consistent planning strategy compared to the planners' occasional back-and-forth decision-making during planning.&#xD;Conclusion:&#xD;The proposed deep reinforcement learning (DRL) agent is capable of efficiently generating HN IMRT plans with consistent quality. &#xD;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
可爱的函函应助liyifan采纳,获得10
1秒前
彩色铅笔完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
承乐发布了新的文献求助10
2秒前
可不可乐完成签到,获得积分10
3秒前
扬帆发布了新的文献求助10
3秒前
heath完成签到,获得积分10
4秒前
不在忧伤发布了新的文献求助20
4秒前
DaBingCHN发布了新的文献求助10
4秒前
111发布了新的文献求助10
5秒前
珍惜发布了新的文献求助30
5秒前
drfwjuikesv完成签到,获得积分10
5秒前
充电宝应助只想梳油头采纳,获得10
5秒前
SciGPT应助阿洁采纳,获得10
6秒前
dd发布了新的文献求助10
6秒前
捕鱼小猫勇往直前完成签到,获得积分10
7秒前
8秒前
8秒前
liuzr应助轻歌水越采纳,获得10
8秒前
Hello应助Dylan采纳,获得10
9秒前
zz完成签到,获得积分10
9秒前
9秒前
清脆的乾完成签到,获得积分10
9秒前
李健应助美满向薇采纳,获得10
9秒前
Leslie完成签到,获得积分10
9秒前
友好凝安完成签到,获得积分20
10秒前
傅。发布了新的文献求助10
10秒前
11秒前
杜杜桃子完成签到,获得积分10
11秒前
科研通AI2S应助扬帆采纳,获得10
11秒前
李希有完成签到,获得积分20
11秒前
12秒前
QUANQUAN完成签到,获得积分10
13秒前
万事都灵完成签到,获得积分10
13秒前
Haley完成签到 ,获得积分0
13秒前
摩卡发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608729
求助须知:如何正确求助?哪些是违规求助? 4693458
关于积分的说明 14878149
捐赠科研通 4718291
什么是DOI,文献DOI怎么找? 2544447
邀请新用户注册赠送积分活动 1509484
关于科研通互助平台的介绍 1472883