已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD‐Assisted TCN–MHA–BiGRU

桥(图论) 计算机科学 色谱法 医学 化学 外科
作者
Jingzhou Xin,X. H. Mo,Yan Jiang,Qizhi Tang,Hong Zhang,Jianting Zhou
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/8833186
摘要

Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time‐series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction‐weighting‐description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time‐frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time‐series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
光亮外套完成签到,获得积分10
3秒前
5秒前
6秒前
7秒前
8秒前
牛芳草发布了新的文献求助10
10秒前
12秒前
hai发布了新的文献求助10
12秒前
光亮的鹏煊完成签到 ,获得积分10
13秒前
qz发布了新的文献求助10
14秒前
Zz发布了新的文献求助10
16秒前
火火完成签到 ,获得积分10
16秒前
牛芳草完成签到,获得积分10
22秒前
英俊的铭应助cream1105采纳,获得10
26秒前
Lucas应助hai采纳,获得10
27秒前
40秒前
star完成签到 ,获得积分10
43秒前
46秒前
小白天钓鱼完成签到 ,获得积分10
47秒前
zz完成签到 ,获得积分10
48秒前
48秒前
顾矜应助Jodie采纳,获得10
50秒前
Zz完成签到,获得积分10
57秒前
今后应助油柑美式采纳,获得10
59秒前
1分钟前
Jodie发布了新的文献求助10
1分钟前
1分钟前
西西完成签到 ,获得积分10
1分钟前
风中的天蓝完成签到 ,获得积分10
1分钟前
hai发布了新的文献求助10
1分钟前
烂漫的断秋完成签到 ,获得积分10
1分钟前
科研通AI2S应助chengzhiheng采纳,获得10
1分钟前
科研通AI6应助dwls采纳,获得10
1分钟前
科研通AI6应助anwen采纳,获得10
1分钟前
hada完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558165
求助须知:如何正确求助?哪些是违规求助? 4643172
关于积分的说明 14670597
捐赠科研通 4584584
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459733