Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD‐Assisted TCN–MHA–BiGRU

桥(图论) 计算机科学 色谱法 医学 化学 外科
作者
Jingzhou Xin,X. H. Mo,Yan Jiang,Qizhi Tang,Hong Zhang,Jianting Zhou
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/8833186
摘要

Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time‐series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction‐weighting‐description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time‐frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time‐series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助哎呀采纳,获得10
刚刚
阿峰完成签到,获得积分20
刚刚
Lian完成签到,获得积分10
1秒前
passerby发布了新的文献求助30
1秒前
lingo发布了新的文献求助10
1秒前
2秒前
阿峰发布了新的文献求助10
4秒前
安年发布了新的文献求助10
4秒前
爆米花应助liangmh采纳,获得10
4秒前
6秒前
6秒前
金博洋发布了新的文献求助10
6秒前
ZhouZhou完成签到 ,获得积分10
6秒前
z123完成签到,获得积分10
7秒前
7秒前
安谢发布了新的文献求助10
8秒前
9秒前
slzyycy发布了新的文献求助10
10秒前
伯聃发布了新的文献求助20
11秒前
香蕉觅云应助安年采纳,获得10
11秒前
我是老大应助鱼辞采纳,获得30
11秒前
12秒前
12秒前
清脆又晴完成签到,获得积分10
15秒前
山里人完成签到,获得积分10
15秒前
deli完成签到,获得积分10
16秒前
16秒前
syan完成签到,获得积分10
18秒前
唠叨的逍遥完成签到,获得积分10
19秒前
苏A尔发布了新的文献求助10
19秒前
YUYUYYU发布了新的文献求助10
19秒前
yyj发布了新的文献求助10
19秒前
领导范儿应助yqsf789采纳,获得10
19秒前
安静的棉花糖完成签到 ,获得积分10
19秒前
李健应助山里人采纳,获得10
20秒前
20秒前
21秒前
无花果应助罗斯ROSE采纳,获得10
22秒前
Keira_Chang发布了新的文献求助10
22秒前
杨茜然完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425046
求助须知:如何正确求助?哪些是违规求助? 4539189
关于积分的说明 14166098
捐赠科研通 4456315
什么是DOI,文献DOI怎么找? 2444120
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412492