Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD‐Assisted TCN–MHA–BiGRU

桥(图论) 计算机科学 色谱法 医学 化学 外科
作者
Jingzhou Xin,X. H. Mo,Yan Jiang,Qizhi Tang,Hong Zhang,Jianting Zhou
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/8833186
摘要

Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time‐series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction‐weighting‐description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time‐frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time‐series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏的璇完成签到 ,获得积分10
刚刚
酷波er应助务实思烟采纳,获得10
刚刚
刚刚
shuoshuo发布了新的文献求助10
刚刚
科研通AI6应助晚风摇曳采纳,获得10
刚刚
bluekids完成签到,获得积分10
1秒前
1秒前
脑洞疼应助可爱花瓣采纳,获得10
3秒前
Akim应助科研虫儿采纳,获得10
3秒前
危机的煎蛋完成签到 ,获得积分10
4秒前
imchenyin完成签到,获得积分10
4秒前
浮游应助boyue采纳,获得10
5秒前
Hello应助boyue采纳,获得10
5秒前
Sven完成签到,获得积分10
5秒前
5秒前
浮游应助饱满的铅笔采纳,获得10
6秒前
6秒前
王大纯发布了新的文献求助10
6秒前
7秒前
小青椒应助xdd采纳,获得150
7秒前
zhouxuan发布了新的文献求助10
7秒前
7秒前
小月完成签到,获得积分10
8秒前
laa发布了新的文献求助10
8秒前
wait发布了新的文献求助200
9秒前
9秒前
绵羊发布了新的文献求助10
9秒前
10秒前
10秒前
Lily完成签到,获得积分10
10秒前
睡洋洋完成签到,获得积分10
10秒前
10秒前
11秒前
gb完成签到 ,获得积分10
11秒前
clyhg发布了新的文献求助10
11秒前
勤劳茗发布了新的文献求助10
11秒前
11秒前
ding应助yijian采纳,获得10
12秒前
12秒前
刻苦寄松发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959983
求助须知:如何正确求助?哪些是违规求助? 4220536
关于积分的说明 13143223
捐赠科研通 4004417
什么是DOI,文献DOI怎么找? 2191353
邀请新用户注册赠送积分活动 1205645
关于科研通互助平台的介绍 1116915