Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD‐Assisted TCN–MHA–BiGRU

桥(图论) 计算机科学 色谱法 医学 化学 外科
作者
Jingzhou Xin,X. H. Mo,Yan Jiang,Qizhi Tang,Hong Zhang,Jianting Zhou
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/8833186
摘要

Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time‐series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction‐weighting‐description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time‐frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time‐series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三木完成签到,获得积分10
刚刚
spenley完成签到,获得积分10
刚刚
小马甲应助文静的如娆采纳,获得10
刚刚
芒小果发布了新的文献求助10
3秒前
Jc完成签到 ,获得积分10
4秒前
4秒前
6秒前
士多啤梨完成签到 ,获得积分10
7秒前
7秒前
小叮当完成签到 ,获得积分10
10秒前
慕青应助芒小果采纳,获得10
10秒前
情怀应助文静的如娆采纳,获得10
12秒前
练英雄发布了新的文献求助10
13秒前
生如夏花完成签到,获得积分10
13秒前
panda完成签到,获得积分10
14秒前
卜靖荷给卜靖荷的求助进行了留言
16秒前
斯文败类应助yagkinc采纳,获得10
24秒前
24秒前
饼饼发布了新的文献求助10
29秒前
dnbe完成签到,获得积分10
31秒前
深海鱼完成签到,获得积分10
35秒前
37秒前
星辰大海应助dnbe采纳,获得10
38秒前
38秒前
Jc发布了新的文献求助10
42秒前
45秒前
orixero应助:P采纳,获得10
45秒前
淡淡的白羊完成签到 ,获得积分10
46秒前
沉默寻凝发布了新的文献求助30
47秒前
qwh完成签到,获得积分20
47秒前
科目三应助准炮打不准采纳,获得10
48秒前
njsj关注了科研通微信公众号
49秒前
17381362015发布了新的文献求助10
50秒前
53秒前
55秒前
hui完成签到,获得积分20
56秒前
无花果应助科研通管家采纳,获得10
56秒前
CAOHOU应助科研通管家采纳,获得10
57秒前
CAOHOU应助科研通管家采纳,获得10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450