Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD‐Assisted TCN–MHA–BiGRU

桥(图论) 计算机科学 色谱法 医学 化学 外科
作者
Jingzhou Xin,X. H. Mo,Yan Jiang,Qizhi Tang,Hong Zhang,Jianting Zhou
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/8833186
摘要

Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time‐series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction‐weighting‐description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time‐frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time‐series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hj完成签到,获得积分10
刚刚
晴Amber完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
jinjing完成签到,获得积分10
4秒前
丘比特应助武雨寒采纳,获得10
5秒前
量子星尘发布了新的文献求助10
12秒前
有血条就敢上完成签到 ,获得积分10
12秒前
耸耸完成签到 ,获得积分10
13秒前
喵喵徐完成签到 ,获得积分10
13秒前
huanglu完成签到 ,获得积分10
15秒前
刘名丰完成签到,获得积分10
15秒前
WSY完成签到 ,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
胡明轩完成签到 ,获得积分10
20秒前
SciGPT应助武雨寒采纳,获得10
26秒前
天才小能喵完成签到 ,获得积分0
27秒前
29秒前
三三完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
31秒前
小巧的梦完成签到,获得积分10
32秒前
cumtlhy88完成签到 ,获得积分10
32秒前
熊雅完成签到,获得积分10
34秒前
橙子发布了新的文献求助10
35秒前
37秒前
38秒前
不重名完成签到 ,获得积分10
44秒前
激动的煎饼完成签到 ,获得积分10
44秒前
武雨寒发布了新的文献求助10
45秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
俞定尚心才可心完成签到 ,获得积分10
48秒前
49秒前
如泣草芥完成签到,获得积分0
49秒前
量子星尘发布了新的文献求助10
53秒前
lxh完成签到 ,获得积分10
54秒前
55秒前
blueweier完成签到 ,获得积分10
57秒前
llhh2024完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658456
求助须知:如何正确求助?哪些是违规求助? 4821768
关于积分的说明 15081508
捐赠科研通 4816942
什么是DOI,文献DOI怎么找? 2577824
邀请新用户注册赠送积分活动 1532666
关于科研通互助平台的介绍 1491364