氢溢流
催化作用
氢
离解(化学)
解吸
甲醇
材料科学
密度泛函理论
氧化物
无机化学
热脱附光谱法
分子
吸附
光化学
化学工程
化学
物理化学
计算化学
有机化学
冶金
工程类
作者
Liang Zhu,Yang Liu,Yanhui Gao,Ningxujin Ding,Danyu Wang,Liuliu Long,Beibei Wang,Junyu Lang,Evgeny I. Vovk,Yong Yang
标识
DOI:10.1021/acsami.4c18915
摘要
The hydrogen dissociation and spillover mechanism on oxide-supported Cu catalysts play a pivotal role in the hydrogenation of carbon dioxide to methanol. This study investigates the hydrogen spillover mechanism on Cu/CeO2 catalysts using in situ spectral characterization under high-pressure reaction conditions and density functional theory (DFT) simulations. The research confirms that the Cu sites serve as the initial dissociation points for the hydrogen molecules. The chemically adsorbed hydrogen (H*) then spills over onto the CeO2 support and interacts with the lattice oxygen to form special hydroxyl groups, while simultaneously reducing the surrounding Ce4+ to form Ce3+. Interestingly, the temperature-programmed desorption (TPD) results found that heating the hydroxyl-containing surface mainly reverses H2 dissociation by desorbing H2 instead of forming H2O, while no significant vacancy formation was detected. The DFT calculation identified a subsurface pathway favoring hydrogen migration, which explained the dominating H2 in the TPD products. A chemical loop study after CO2/H2 cofeeding on the catalyst reveals that hydrogen spillover facilitates the highly reduced surface serving as the active centers, enabling a secondary methanol synthesis in a vacuum. This study provides a model of the formation and desorption pathways of hydrogen species on Cu/CeO2 catalysts and illustrates the key role of the hydrogen spillover mechanism in promoting the CO2 hydrogenation to methanol reaction through important experimental analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI