MHCLSyn: Multi-View Hypergraph Contrastive Learning for Synergistic Drug Combination Prediction

超图 药品 计算机科学 人工智能 对比分析 机器学习 自然语言处理 数学 语言学 药理学 医学 离散数学 哲学
作者
Lei Li,Guodong Lü,Chun-Hou Zheng,Renyong Lin,Yansen Su
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:7 (4): 1273-1286
标识
DOI:10.26599/bdma.2024.9020054
摘要

In the field of cancer treatment, drug combination therapy appears to be a promising treatment strategy compared to monotherapy. Recently, plenty of computational models are gradually applied to prioritize synergistic drug combinations. However, the existing prediction models have not fully exploited the multi-way relations between drug combinations and cell lines. Besides, the number of identified drug-drug-cell line triplets is insufficient owning to the high cost of in vitro screening, which affects the ability of models to capture and utilize multi-way relations. To address this challenge, we design the multi-view hypergraph contrastive learning model, termed MHCLSyn, for synergistic drug combination prediction. First, the synergistic drug-drug-cell line triplets are formulated as a drug synergy hypergraph, and three task-specific hypergraphs are designed based on the drug synergy hypergraph. Then, we design a multi-view hypergraph contrastive learning with enhancement schemes, which allows for more expressive and discriminative node representation learning on drug synergy hypergraph. After that, the representations of nodes indicating drug-drug-cell line triplets are inputted to fully connected network for making predictions. Extensive experiments show MHCLSyn achieves better performance than state-of-the-art prediction models on benchmark datasets and is applicable to unseen drug combinations or cell lines. Case study indicates that MHCLSyn is capable of detecting potential synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lankeren发布了新的文献求助10
刚刚
fenfen完成签到,获得积分10
1秒前
1秒前
LALball发布了新的文献求助10
2秒前
2秒前
2秒前
英俊的铭应助炽天使采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
Owen应助6a采纳,获得10
4秒前
4秒前
无花果应助felix采纳,获得10
5秒前
李飞完成签到,获得积分10
6秒前
6秒前
无花果应助寒江雪采纳,获得10
7秒前
7秒前
7秒前
丘比特应助憨憨采纳,获得10
8秒前
10秒前
ino发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
12秒前
AQI发布了新的文献求助10
13秒前
15秒前
炽天使发布了新的文献求助10
15秒前
李飞发布了新的文献求助30
15秒前
科研通AI6应助娇娇尔采纳,获得10
16秒前
曹杨磊完成签到,获得积分10
16秒前
sssss完成签到 ,获得积分10
16秒前
16秒前
萱棚发布了新的文献求助10
16秒前
小值钱完成签到,获得积分10
17秒前
19秒前
筱芯爱上神完成签到 ,获得积分10
19秒前
20秒前
寒江雪发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402