MHCLSyn: Multi-View Hypergraph Contrastive Learning for Synergistic Drug Combination Prediction

超图 药品 计算机科学 人工智能 对比分析 机器学习 自然语言处理 数学 语言学 药理学 医学 离散数学 哲学
作者
Lei Li,Guodong Lü,Chun-Hou Zheng,Renyong Lin,Yansen Su
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:7 (4): 1273-1286
标识
DOI:10.26599/bdma.2024.9020054
摘要

In the field of cancer treatment, drug combination therapy appears to be a promising treatment strategy compared to monotherapy. Recently, plenty of computational models are gradually applied to prioritize synergistic drug combinations. However, the existing prediction models have not fully exploited the multi-way relations between drug combinations and cell lines. Besides, the number of identified drug-drug-cell line triplets is insufficient owning to the high cost of in vitro screening, which affects the ability of models to capture and utilize multi-way relations. To address this challenge, we design the multi-view hypergraph contrastive learning model, termed MHCLSyn, for synergistic drug combination prediction. First, the synergistic drug-drug-cell line triplets are formulated as a drug synergy hypergraph, and three task-specific hypergraphs are designed based on the drug synergy hypergraph. Then, we design a multi-view hypergraph contrastive learning with enhancement schemes, which allows for more expressive and discriminative node representation learning on drug synergy hypergraph. After that, the representations of nodes indicating drug-drug-cell line triplets are inputted to fully connected network for making predictions. Extensive experiments show MHCLSyn achieves better performance than state-of-the-art prediction models on benchmark datasets and is applicable to unseen drug combinations or cell lines. Case study indicates that MHCLSyn is capable of detecting potential synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夕阳完成签到,获得积分10
刚刚
1秒前
隐形曼青应助小爱采纳,获得10
1秒前
1秒前
斯文败类应助Cerasus721采纳,获得10
2秒前
3秒前
慕辰发布了新的文献求助10
3秒前
3秒前
天天快乐应助IBMffff采纳,获得10
3秒前
4秒前
温梦花雨完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
洁净枫发布了新的文献求助10
5秒前
5秒前
小蘑菇应助赖善若采纳,获得10
6秒前
6秒前
wangjialong发布了新的文献求助10
6秒前
言屿发布了新的文献求助10
6秒前
7秒前
杨仔发布了新的文献求助10
7秒前
愉快的馒头完成签到,获得积分10
7秒前
0128lun完成签到,获得积分0
7秒前
7秒前
8秒前
似是而非应助AJJACKY采纳,获得10
8秒前
8秒前
Joe发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
Dobronx03发布了新的文献求助10
10秒前
10秒前
11秒前
xzwxzw发布了新的文献求助10
11秒前
11秒前
脑洞疼应助科研新狗采纳,获得30
12秒前
阳光的衫发布了新的文献求助10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259400
求助须知:如何正确求助?哪些是违规求助? 2901041
关于积分的说明 8313648
捐赠科研通 2570419
什么是DOI,文献DOI怎么找? 1396491
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631527