MHCLSyn: Multi-View Hypergraph Contrastive Learning for Synergistic Drug Combination Prediction

超图 药品 计算机科学 人工智能 对比分析 机器学习 自然语言处理 数学 语言学 药理学 医学 离散数学 哲学
作者
Lei Li,Guodong Lü,Chun-Hou Zheng,Renyong Lin,Yansen Su
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:7 (4): 1273-1286
标识
DOI:10.26599/bdma.2024.9020054
摘要

In the field of cancer treatment, drug combination therapy appears to be a promising treatment strategy compared to monotherapy. Recently, plenty of computational models are gradually applied to prioritize synergistic drug combinations. However, the existing prediction models have not fully exploited the multi-way relations between drug combinations and cell lines. Besides, the number of identified drug-drug-cell line triplets is insufficient owning to the high cost of in vitro screening, which affects the ability of models to capture and utilize multi-way relations. To address this challenge, we design the multi-view hypergraph contrastive learning model, termed MHCLSyn, for synergistic drug combination prediction. First, the synergistic drug-drug-cell line triplets are formulated as a drug synergy hypergraph, and three task-specific hypergraphs are designed based on the drug synergy hypergraph. Then, we design a multi-view hypergraph contrastive learning with enhancement schemes, which allows for more expressive and discriminative node representation learning on drug synergy hypergraph. After that, the representations of nodes indicating drug-drug-cell line triplets are inputted to fully connected network for making predictions. Extensive experiments show MHCLSyn achieves better performance than state-of-the-art prediction models on benchmark datasets and is applicable to unseen drug combinations or cell lines. Case study indicates that MHCLSyn is capable of detecting potential synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gejun完成签到,获得积分20
刚刚
刚刚
汉关完成签到,获得积分10
刚刚
Happy422发布了新的文献求助10
1秒前
枫叶发布了新的文献求助10
1秒前
幽默的宛白完成签到,获得积分20
1秒前
gcc应助小小杜采纳,获得20
1秒前
小马甲应助黑熊安巴尼采纳,获得10
1秒前
2秒前
bkagyin应助junzilan采纳,获得10
2秒前
Young完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
daniel完成签到,获得积分10
4秒前
不爱学习的小渣渣完成签到,获得积分10
4秒前
4秒前
情怀应助欢喜的毛豆采纳,获得10
5秒前
勖勖发布了新的文献求助10
5秒前
自然的飞鸟完成签到,获得积分0
5秒前
6秒前
黑熊安巴尼完成签到,获得积分20
7秒前
9秒前
yiyiyi完成签到 ,获得积分10
10秒前
10秒前
桐桐应助尼古拉斯二狗蛋采纳,获得10
10秒前
Zezezee完成签到,获得积分10
11秒前
将离发布了新的文献求助10
11秒前
调研昵称发布了新的文献求助10
12秒前
kingmin应助yijiubingshi采纳,获得10
12秒前
12秒前
13秒前
hxn完成签到,获得积分10
13秒前
奋斗尔安完成签到,获得积分10
13秒前
沙拉发布了新的文献求助10
14秒前
hajy完成签到 ,获得积分10
14秒前
单纯寒凝发布了新的文献求助10
14秒前
14秒前
junzilan发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808