MHCLSyn: Multi-View Hypergraph Contrastive Learning for Synergistic Drug Combination Prediction

超图 药品 计算机科学 人工智能 对比分析 机器学习 自然语言处理 数学 语言学 药理学 医学 离散数学 哲学
作者
Lei Li,Guodong Lü,Chun-Hou Zheng,Renyong Lin,Yansen Su
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:7 (4): 1273-1286
标识
DOI:10.26599/bdma.2024.9020054
摘要

In the field of cancer treatment, drug combination therapy appears to be a promising treatment strategy compared to monotherapy. Recently, plenty of computational models are gradually applied to prioritize synergistic drug combinations. However, the existing prediction models have not fully exploited the multi-way relations between drug combinations and cell lines. Besides, the number of identified drug-drug-cell line triplets is insufficient owning to the high cost of in vitro screening, which affects the ability of models to capture and utilize multi-way relations. To address this challenge, we design the multi-view hypergraph contrastive learning model, termed MHCLSyn, for synergistic drug combination prediction. First, the synergistic drug-drug-cell line triplets are formulated as a drug synergy hypergraph, and three task-specific hypergraphs are designed based on the drug synergy hypergraph. Then, we design a multi-view hypergraph contrastive learning with enhancement schemes, which allows for more expressive and discriminative node representation learning on drug synergy hypergraph. After that, the representations of nodes indicating drug-drug-cell line triplets are inputted to fully connected network for making predictions. Extensive experiments show MHCLSyn achieves better performance than state-of-the-art prediction models on benchmark datasets and is applicable to unseen drug combinations or cell lines. Case study indicates that MHCLSyn is capable of detecting potential synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
懵懂的采梦完成签到,获得积分10
1秒前
小白完成签到,获得积分10
1秒前
默默完成签到,获得积分10
2秒前
畅快的长颈鹿完成签到,获得积分10
2秒前
cxt1346完成签到 ,获得积分10
2秒前
elgar612完成签到,获得积分10
3秒前
馒头完成签到,获得积分10
3秒前
kkk完成签到,获得积分10
3秒前
4秒前
Xuu完成签到,获得积分10
4秒前
在我梦里绕完成签到,获得积分10
4秒前
马夋发布了新的文献求助10
4秒前
air-yi完成签到,获得积分10
4秒前
5秒前
deng发布了新的文献求助10
5秒前
iwww发布了新的文献求助10
6秒前
积极的黑猫完成签到,获得积分10
6秒前
71发布了新的文献求助10
6秒前
gx20完成签到,获得积分10
6秒前
温柔问枫quwnw完成签到,获得积分10
6秒前
jenningseastera完成签到,获得积分0
7秒前
一程完成签到 ,获得积分10
7秒前
淡淡猕猴桃完成签到,获得积分10
8秒前
清脆的靖仇应助kkk采纳,获得10
8秒前
Fimmy发布了新的文献求助10
9秒前
eason完成签到,获得积分10
9秒前
114liu完成签到,获得积分10
9秒前
农夫完成签到,获得积分10
10秒前
TangWL完成签到 ,获得积分10
10秒前
atsd完成签到,获得积分10
11秒前
刘的花发布了新的文献求助10
11秒前
11秒前
12秒前
zyyz完成签到,获得积分10
12秒前
Stella完成签到 ,获得积分10
12秒前
QWJ完成签到,获得积分10
13秒前
PACEPANG完成签到 ,获得积分10
13秒前
不懈奋进应助Kinn采纳,获得30
13秒前
deng完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960243
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129837
捐赠科研通 3238572
什么是DOI,文献DOI怎么找? 1789819
邀请新用户注册赠送积分活动 871927
科研通“疑难数据库(出版商)”最低求助积分说明 803099