材料科学
阳极
纳米晶
电池(电)
金属锂
锂(药物)
硒化物
多孔性
纳米技术
碳纤维
微球
化学工程
金属
纳米孔
复合数
硒
电极
复合材料
化学
冶金
功率(物理)
物理化学
内分泌学
工程类
物理
医学
量子力学
作者
Hyo Yeong Seo,Yeong Beom Kim,Thillai Govindaraja Senthamaraikannan,Dong‐Hee Lim,Yun Chan Kang,Gi Dae Park
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-02-05
标识
DOI:10.1021/acsnano.4c14290
摘要
To enable the practical use of a lithium metal anode, the rational design of three-dimensional (3D) host materials is considered as a promising approach to mitigate lithium dendrite formation and accommodate substantial volume fluctuations. Herein, we first design a 3D conductive host material comprised of Ag2Se nanocrystals encapsulated within closed pore structured porous carbon microspheres. The homogeneous distribution of the AgLi alloy and Li2Se phases, generated through the consecutive conversion and alloying reaction of the Ag2Se phase, enables the developed host materials to exhibit rapid lithium deposition kinetics. Additionally, the inner void structures with encapsulated lithiophilic nanocrystals promote primary deposition within the carbon framework without dendrite growth. Consequently, optimized pore structure as well as position of lithiophilic nanocrystals in carbon microsphere are rationally tailored for stable plating/stripping behaviors of lithium with high Coulombic efficiency and stable voltage profiles. Paired with the LiNi0.8Co0.1Mn0.1O2 cathode, the assembled full cell demonstrates outstanding cycling stability and impressive high-rate performance, highlighting its potential for practical applications. Moreover, to explore how different pore structures influence the stability of the Li metal host, Ag2Se@C hosts with various pore structures (including open pore structures and densely structured configurations without inner voids) are also fabricated and compared with the developed host material.
科研通智能强力驱动
Strongly Powered by AbleSci AI