有机太阳能电池
光伏系统
材料科学
苯并三唑
能量转换效率
结晶度
纳米技术
光电子学
聚合物
电气工程
冶金
复合材料
工程类
作者
Xi-Xi Zhang,Xin Wu,J.B. Zhang,Xiaolei Kong,Jing Li,Aoxiang Li,Zhenyu Li,Xinrui Li,Mingyue Zhang,Guang Yang,Yongfang Li,Chenkai Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-12-30
标识
DOI:10.1021/acsnano.4c12268
摘要
The photovoltaic performance of organic solar cells (OSCs) has reached the threshold for industrial applications, but the cost of most high-performance organic photovoltaic molecules is too high to meet the needs of industrialization. Herein, two low-cost thiophene-alt-quinoxaline (TQ)-based polymers, PTQ16–10 and PTQ16–20, are designed and synthesized by incorporating a benzotriazole (BTA) unit into the PTQ10 backbone, with the consideration of expanding the chemical modifiability of PTQ10 and thus optimizing its photovoltaic properties. The incorporation of BTA induces improved light absorption, up-shifted energy levels, more orderly molecular π–π packing, enhanced molecular crystallinity, and better charge transport capacity of the two polymers. Consequently, PTQ16–10:K2-based OSCs achieve enhanced charge generation and transport with faster and more efficient hole transfer, suppressed carrier recombination, and higher charge mobilities, resulting in an impressive power conversion efficiency (PCE) of 18.83%. Meanwhile, by introducing the second acceptor K6 into the PTQ16–10:K2 host blend, the ternary device achieves an excellent PCE of 19.52%, which is among the highest PCEs of OSCs based on low-cost photovoltaic materials. More importantly, this device is highly cost-effective for industrial-scale production, with an estimated minimum sustainable price of only 0.377 $ Wp–1 (Wp = peak-Watt), which is appreciably lower than that of reported high-performance OSCs. This work offers a rational guide in the development of low-cost and high-performance organic photovoltaic molecules and suggests the great potential of PTQ16–10 in cost-effective OSCs for industrialization.
科研通智能强力驱动
Strongly Powered by AbleSci AI