亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Digital Twins to Guide Interpretable AI for Diagnosis and Prognosis in Heart Failure

鉴定(生物学) 心力衰竭 人工智能 计算机科学 医学 内科学 生物 植物
作者
Feng Gu,Andreas Meyer,Filip Ježek,S Z Zhang,Tonimarie Catalan,Alexandria Miller,Noah A. Schenk,Victoria Sturgess,Domingo E. Uceda,Rui Li,Emily Wittrup,Xinwei Hua,Brian E. Carlson,Yi‐Da Tang,Farhan Raza,Kayvan Najarian,Scott L. Hummel,Daniel Beard
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.11.11.24317106
摘要

Summary Background Heart failure (HF) is a highly heterogeneous and complex condition. Although patient care generates vast amounts of clinical data, robust methods to synthesize available data for individualized management are lacking. Methods A mechanistic computational model of cardiac and cardiovascular system mechanics was identified for each individual in a cohort of 343 patients with HF. The identified digital twins — comprising optimized sets of parameters and corresponding simulations of cardiovascular system function—for patients with HF in the cohort is used to inform both supervised and unsupervised approaches in identifying phenogroups and novel mechanistic drivers of cardiovascular death risk. Findings The integration of digital twins into AI-based analyses of patient data enhances the performance and interpretability of prognostics AI models. Prognostics AI models trained with digital twin features are more generalizable than models trained with only clinical variables, as evaluated using an independent prospective cohort. In addition, the digital twin-based approach to phenomapping and predictive AI helps address inconsistencies and inaccuracies in clinical measurements, enables imputation of missing data, and estimates functional parameters that are otherwise unmeasurable directly. This approach provides a more comprehensive and accurate representation of the patient’s disease state than raw clinical data alone. Interpretation The developed and validated digital twin-based AI framework has the potential to simulate patient-specific pathophysiologic parameters, thereby informing prognosis and guiding therapeutic options.Ultimately, this approach has the potential to enhance the ability to focus on the most critical aspects of a patient’s condition, leading to individualized care and management. Funding National Institutes of Health and Joint Institute for Translational and Clinical Research (University of Michigan and Peking University Health Science Center)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
49秒前
拓跋雨梅完成签到 ,获得积分0
1分钟前
mjf111应助DrleedsG采纳,获得10
1分钟前
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
Lily完成签到,获得积分10
2分钟前
clairevox完成签到,获得积分10
3分钟前
3分钟前
clairevox发布了新的文献求助10
3分钟前
3分钟前
勤恳依霜发布了新的文献求助10
3分钟前
jfc完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
传奇3应助XIN采纳,获得10
5分钟前
5分钟前
5分钟前
XIN发布了新的文献求助10
5分钟前
mjf111发布了新的文献求助10
5分钟前
mjf111完成签到,获得积分10
5分钟前
6分钟前
xz完成签到 ,获得积分10
6分钟前
XIN发布了新的文献求助10
6分钟前
XIN完成签到,获得积分10
6分钟前
6分钟前
qiuxuan100发布了新的文献求助10
6分钟前
9分钟前
9分钟前
ding应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
Lucas应助强健的柚子采纳,获得10
9分钟前
10分钟前
10分钟前
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662474
邀请新用户注册赠送积分活动 647005