亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

1233 Predictive and generative AI to guide the clinical development of HFB200301, a first-in-class TNFR2 agonist: drug intelligence science (DIS®)

兴奋剂 人工智能 生成语法 班级(哲学) 药品 计算机科学 机器学习 医学 药理学 内科学 受体
作者
Jack Pollard,Spencer B. Huggett,Monika Manne,Eladio J. Márquez,Ashwin George,Gabrielle Wong,William D. Hedrich,Xi Lin,Shaozhen Xie,Margaret E Chen,John Pallante,Jinping Gan,Liang Schweizer,Robert H.I. Andtbacka
标识
DOI:10.1136/jitc-2024-sitc2024.1233
摘要

Background

Predictive and generative artificial intelligence (AI) models can complement decision-making in Discovery and Early Development. For instance, generative AI can bridge data gaps by identifying patterns across data modalities such as single-cell, imaging, and medical data. Predictive models can then link these patterns to drug efficacy and safety outcomes in patients. HiFiBiO has developed a multi-modal generative AI and predictive modeling platform called Drug Intelligence Science (DIS®) to support decision making for cancer and autoimmune therapies. This case study presents results from the platform that have guided the development of HFB200301, our first-in-class TNFR2 agonist (NCT05238883).

Methods

Pathological cell identification and target credentialing: To identify the pathological cell types and their targets for immune therapies, we employed generative AI and deep learning with variational autoencoders to create a Disease Cell Atlas with > 15 million human cells from public and internally generated single-cell data. For oncology targets we emphasize curation and modeling of data from patients refractory to anti-PD-(L)1 therapy. Tumor type selection: We have developed a series of multi-modal machine learning and predictive models that integrate preclinical data with accumulating peripheral and tumor data from our clinical trials to select and to refine the tumor types and subgroups most likely to benefit from immune therapies like HFB200301. Proof of mechanism in the tumor: To identify and to quantify the on-mechanism action of our compounds we employed convolutional neural networks on paired H&E and multiplex immunofluorescence images (mIF) to delineate individual cells, their states, densities, and spatial locations.

Results

Analysis of our Disease Cell Atlas in the anti-PD-(L)1 refractory setting revealed that TNFR2 is primarily expressed on CD8+ T-cells lacking PD-1 expression, suggesting that agonism may mobilize a distinct set of CD8+T-cells. In our HFB200301 TNFR2 agonist clinical trial (NCT05238883), several tumor types selected by our predictive models, such as anti-PD-(L)1 refractory pleural mesothelioma and EBV+ gastric cancer, have shown either monotherapy or combination anti-tumor activity with the anti-PD-1 inhibitor tislelizumab, which suggests that our predictive models are surfacing the tumor types that will benefit from HFB200301. Moreover, in the same patients exhibiting anti-tumor activity, mIF analysis revealed marked increases in activated CD8+ T-cells following compound treatment, suggesting that the anti-tumor activity results from the on-mechanism action of HFB200301.

Conclusions

These case studies demonstrate how our multi-modal generative AI and predictive modeling platform, Drug Intelligence Science (DIS®), can support decision-making and increase the probability of success in the clinic.

Trial Registration

NCT05238883.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今我来思发布了新的文献求助10
1秒前
1秒前
脑洞疼应助笨笨米卡采纳,获得10
2秒前
tanhaowen发布了新的文献求助10
5秒前
下一块蛋糕完成签到 ,获得积分10
12秒前
dxwy完成签到,获得积分10
12秒前
腼腆的十八完成签到,获得积分10
14秒前
缓慢采柳完成签到 ,获得积分10
15秒前
健壮雨兰完成签到,获得积分10
18秒前
合一海盗完成签到,获得积分10
22秒前
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Cino完成签到 ,获得积分10
27秒前
孙明丽发布了新的文献求助10
27秒前
Jeny发布了新的文献求助50
32秒前
孙明丽完成签到,获得积分10
35秒前
科研通AI5应助VDC采纳,获得10
35秒前
38秒前
DD发布了新的文献求助10
43秒前
小怪完成签到,获得积分10
45秒前
49秒前
wanci应助务实一斩采纳,获得10
52秒前
52秒前
能干的行云完成签到,获得积分10
54秒前
苏苏发布了新的文献求助10
55秒前
56秒前
57秒前
lisasaguan完成签到,获得积分10
58秒前
笨笨米卡发布了新的文献求助10
58秒前
59秒前
汉堡包应助苏苏采纳,获得10
1分钟前
1分钟前
小马甲应助害羞小土豆采纳,获得10
1分钟前
1分钟前
李健应助yuan采纳,获得10
1分钟前
Ruuo616完成签到 ,获得积分10
1分钟前
lisasaguan发布了新的文献求助10
1分钟前
务实一斩发布了新的文献求助10
1分钟前
1分钟前
我是老大应助Amarantine采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538906
求助须知:如何正确求助?哪些是违规求助? 3116600
关于积分的说明 9326048
捐赠科研通 2814589
什么是DOI,文献DOI怎么找? 1546891
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712145