材料科学
癌细胞
阿霉素
共轭体系
纳米技术
药物输送
靶向给药
生物物理学
纳米颗粒
介孔二氧化硅
癌症
化学
化疗
介孔材料
生物化学
聚合物
生物
复合材料
催化作用
遗传学
作者
Pradip Das,Sílvia Pujals,Lamiaa M. A. Ali,Magali Gary‐Bobo,Lorenzo Albertazzi,Jean‐Olivier Durand
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (28): 12008-12024
被引量:7
摘要
Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI