Boundary-Guided and Region-Aware Network With Global Scale-Adaptive for Accurate Segmentation of Breast Tumors in Ultrasound Images

计算机科学 分割 背景(考古学) 人工智能 图像分割 边界(拓扑) 计算机视觉 噪音(视频) 模式识别(心理学) 乳腺超声检查 乳腺癌 图像(数学) 乳腺摄影术 癌症 数学 古生物学 数学分析 内科学 生物 医学
作者
Kai Hu,Xiang Zhang,Dongjin Lee,Dapeng Xiong,Yuan Zhang,Xieping Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4421-4432 被引量:15
标识
DOI:10.1109/jbhi.2023.3285789
摘要

Breast ultrasound (BUS) image segmentation is a critical procedure in the diagnosis and quantitative analysis of breast cancer. Most existing methods for BUS image segmentation do not effectively utilize the prior information extracted from the images. In addition, breast tumors have very blurred boundaries, various sizes and irregular shapes, and the images have a lot of noise. Thus, tumor segmentation remains a challenge. In this article, we propose a BUS image segmentation method using a boundary-guided and region-aware network with global scale-adaptive (BGRA-GSA). Specifically, we first design a global scale-adaptive module (GSAM) to extract features of tumors of different sizes from multiple perspectives. GSAM encodes the features at the top of the network in both channel and spatial dimensions, which can effectively extract multi-scale context and provide global prior information. Moreover, we develop a boundary-guided module (BGM) for fully mining boundary information. BGM guides the decoder to learn the boundary context by explicitly enhancing the extracted boundary features. Simultaneously, we design a region-aware module (RAM) for realizing the cross-fusion of diverse layers of breast tumor diversity features, which can facilitate the network to improve the learning ability of contextual features of tumor regions. These modules enable our BGRA-GSA to capture and integrate rich global multi-scale context, multi-level fine-grained details, and semantic information to facilitate accurate breast tumor segmentation. Finally, the experimental results on three publicly available datasets show that our model achieves highly effective segmentation of breast tumors even with blurred boundaries, various sizes and shapes, and low contrast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LiuZhe发布了新的文献求助30
1秒前
1秒前
充电宝应助jinxingyue采纳,获得10
1秒前
三新荞应助nert采纳,获得10
1秒前
ljycasey完成签到,获得积分10
2秒前
蓝天发布了新的文献求助10
2秒前
虚幻龙猫发布了新的文献求助10
2秒前
没有昵称完成签到,获得积分10
3秒前
Angie发布了新的文献求助10
3秒前
WY关闭了WY文献求助
3秒前
那个骨粉发布了新的文献求助10
3秒前
ZZ发布了新的文献求助10
3秒前
6秒前
拉长的芳发布了新的文献求助10
6秒前
杳鸢应助彳亍采纳,获得10
6秒前
可爱的函函应助无辜善愁采纳,获得10
7秒前
7秒前
ding应助小李采纳,获得10
7秒前
JamesPei应助alhn采纳,获得30
8秒前
脑洞疼应助欧阳采纳,获得10
8秒前
粗暴的谷云发布了新的文献求助150
9秒前
科研通AI2S应助Xuu采纳,获得10
9秒前
10秒前
飞飞飞完成签到,获得积分20
10秒前
11秒前
在水一方应助ddd采纳,获得30
11秒前
12秒前
陈末应助高高的归尘采纳,获得10
12秒前
jinxingyue发布了新的文献求助10
14秒前
buno应助那个骨粉采纳,获得10
15秒前
15秒前
张三十完成签到,获得积分10
15秒前
16秒前
16秒前
加油鸭鸭鸭完成签到,获得积分10
16秒前
17秒前
ding应助拉长的芳采纳,获得30
18秒前
嗯哼应助单薄不惜采纳,获得20
19秒前
CL完成签到,获得积分10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228538
求助须知:如何正确求助?哪些是违规求助? 2876357
关于积分的说明 8194668
捐赠科研通 2543440
什么是DOI,文献DOI怎么找? 1373770
科研通“疑难数据库(出版商)”最低求助积分说明 646833
邀请新用户注册赠送积分活动 621413