Pseudo-Supervised Low-Light Image Enhancement With Mutual Learning

人工智能 计算机科学 能见度 图像(数学) 模式识别(心理学) 监督学习 计算机视觉 无监督学习 机器学习 人工神经网络 光学 物理
作者
Yu Luo,Bijia You,Guanghui Yue,Jie Ling
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 85-96 被引量:8
标识
DOI:10.1109/tcsvt.2023.3284856
摘要

Low-light image enhancement (LIE) is important for many high-level vision tasks as the poor visibility of underexposed images can severely degrade the performance of the subsequent image recognition, analysis, etc. Although recent deep-learning-based LIE methods exhibit promising performance, most of them require a large number of paired training images, thereby limiting the practicability to real scenarios. In this paper, we propose a pseudo-supervised LIE method with the integration of mutual learning. Specifically, for the given low-light image, we first use a quadratic curve to generate a pseudo-clear image, which is served as the auxiliary ground truth for supervision, then the pseudo-paired images are simultaneously input to two parallel homogeneous branches to learn the expected enhanced result through the knowledge distillation of two branches via mutual learning. As both the generated image and the input low-light image underlies the desired solution, the mutual learning strategy enables the two branches learn from each other and produce the final results. Extensive experiments demonstrate that the proposed method outperforms most existing unsupervised LIE methods in terms of both qualitative and quantitative evaluations, and also achieves competitive performance against many supervised and semi-supervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助体贴怜翠采纳,获得10
3秒前
胖虎发布了新的文献求助10
4秒前
4秒前
dy发布了新的文献求助10
7秒前
7秒前
qwer发布了新的文献求助10
8秒前
努努完成签到 ,获得积分10
8秒前
羊加橙发布了新的文献求助10
8秒前
翱翔者完成签到,获得积分10
9秒前
9秒前
牧童完成签到,获得积分10
10秒前
科研通AI5应助平凡的世界采纳,获得30
11秒前
疑问师完成签到,获得积分10
12秒前
kw完成签到 ,获得积分10
12秒前
陈飞飞发布了新的文献求助10
13秒前
13秒前
14秒前
bkagyin应助dy采纳,获得10
14秒前
橙子快跑发布了新的文献求助10
14秒前
16秒前
纯真的白风完成签到,获得积分20
17秒前
17秒前
老板娘完成签到,获得积分10
18秒前
Gigi发布了新的文献求助10
18秒前
18秒前
体贴怜翠发布了新的文献求助10
21秒前
打打应助Gigi采纳,获得10
21秒前
杳鸢应助眼睛大老姆采纳,获得10
21秒前
Urologyzz发布了新的文献求助10
22秒前
烟花应助乐观的颦采纳,获得10
22秒前
小红狐完成签到,获得积分10
23秒前
我是老大应助橙子快跑采纳,获得10
23秒前
24秒前
24秒前
24秒前
我是老大应助hxliu采纳,获得10
24秒前
充电宝应助有魅力夜安采纳,获得10
25秒前
绿豆糕ovo完成签到,获得积分10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583640
求助须知:如何正确求助?哪些是违规求助? 3152886
关于积分的说明 9494504
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735428
科研通“疑难数据库(出版商)”最低求助积分说明 721228