High accuracy prediction of dipeptide angiotensin-converting enzyme (ACE) inhibitory activity by improving the credibility of the 3D-quantitative structure-activity relationship (3D-QSAR) model database and investigating inhibition mechanism

数量结构-活动关系 二肽 化学 对接(动物) 数据库 计算生物学 计算机科学 立体化学 生物化学 生物 医学 护理部
作者
Qi Liu,Shan Shao,Jingyu Bao,Syed Jalil Shah,Shumin Yue,Xinqi Luan,Qing Liu,Linguang Xing,Zhongfeng Shi,Zhenxia Zhao,Zhongxing Zhao
出处
期刊:Process Biochemistry [Elsevier]
卷期号:131: 114-124 被引量:5
标识
DOI:10.1016/j.procbio.2023.06.010
摘要

The 3D-QSAR model is one of the most effective techniques for predicting the peptide bioactivity based on their structure properties. The accuracy of model prediction is highly dependent on the bio-activity of the peptides in its dataset. However, the same peptide used for constructing the database was reported to have obviously different activities in different published articles, which may significantly decrease the prediction accuracy. Based on this, we chose ACE inhibitory (ACE-I) dipeptides that can be absorbed directly into the human small intestine as research object. Ten dipeptides were randomly selected from the literatures for molecular docking with ACE and synthesized to test their activity. Ultimately, a linear equation was developed between bio-activities and docking scores, which was used to revalidate the reliable ACE-I activities of all reported dipeptides for constructing a credible dataset of 3D-QSAR model. The prediction accuracy was significantly enhanced and the model we established had a high Q2 = 0.840 and R2 = 0.998. Furthermore, dipeptide CW was predicted and tested in vitro to achieve the highest ACE-I activity (IC50 = 0.16 μM), and the inhibition mechanism was also investigated. This study introduced a new method for predicting bio-activity with high precision using the 3D-QSAR model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助PANYS采纳,获得10
1秒前
AlienU完成签到,获得积分10
2秒前
2秒前
坚强的紫菜完成签到,获得积分10
3秒前
zzzkyt发布了新的文献求助10
3秒前
森气完成签到,获得积分10
3秒前
4秒前
小星完成签到,获得积分10
6秒前
6秒前
6秒前
lvsehx发布了新的文献求助10
6秒前
枕泉漱石完成签到 ,获得积分10
6秒前
开心的瘦子完成签到,获得积分10
7秒前
云川发布了新的文献求助10
7秒前
7秒前
7秒前
卢荣秀完成签到,获得积分10
10秒前
帽帽完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
nykxo完成签到,获得积分20
14秒前
汉堡包应助wanggongxiu采纳,获得10
15秒前
fillippo99应助77采纳,获得10
17秒前
Hello应助鳗鱼凡波采纳,获得10
17秒前
18秒前
yyy发布了新的文献求助10
19秒前
摆烂废物关注了科研通微信公众号
20秒前
22秒前
PANYS发布了新的文献求助10
23秒前
CodeCraft应助悦宝123456采纳,获得10
25秒前
hanyang965发布了新的文献求助10
25秒前
midrain发布了新的文献求助20
25秒前
30秒前
31秒前
wanggongxiu发布了新的文献求助10
34秒前
摆烂废物发布了新的文献求助10
34秒前
柒柒完成签到,获得积分10
35秒前
欣喜皓轩完成签到 ,获得积分10
36秒前
不安的未来完成签到 ,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580