慢性阻塞性肺病
免疫系统
免疫学
医学
发病机制
生物标志物
基因表达
基因
生物
内科学
遗传学
作者
Xiaoyu Zhao,Yuanyi Yue,Xueqing Wang,Qiang Zhang
标识
DOI:10.1016/j.intimp.2023.110399
摘要
Immune mechanism is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the exact immune pathogenesis still remains unclear. This study aimed to identify the immune-related biomarkers in COPD through bioinformatics analysis and its potential molecular mechanism.GSE76925 was downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened, and enrichment analysis was performed. Single sample gene enrichment analysis (ssGSEA) was conducted to score the infiltration levels of immune cells. Weighted gene co-expression network analysis (WGCNA) was applied to identify trait-related modules and to further determine the key module-related DEGs. Moreover, the correlations between the key genes and clinical parameters and infiltration levels of immune cells were analyzed. Furthermore, expression of the selected one key gene, PLA2G7, the frequency of MDSCs, and the expression of MDSCs-related immunosuppressive mediators were determined among healthy, smokers and COPD patients. Finally, effects of PLA2G7 abnormal expression on the frequency of MDSCs and the expression of MDSCs-related immunosuppressive mediators were examined.A total of 352 DEGs were observed. These DEGs were mainly related to RNA metabolism and positive regulation of organelle organization. In addition, the black module was the most correlated with COPD. Six key genes (ADAMDEC1, CCL19, CHIT1, MMP9, PLA2G7, and TM4SF19) were identified between the black module and DEGs. Serum Lp-PLA2 and mRNA levels of PLA2G7, MDSCs, and MDSCs-related immunosuppressive mediators were found to be upregulated in COPD patients compared to the controls. The expression of PLA2G7 represented positive impact on the frequency of MDSCs and the expression of MDSCs-related immunosuppressive mediators.PLA2G7 may serve as a potential immune-related biomarker contributing to the progression of COPD by promoting expansion and suppressive functions of MDSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI