Research on Long-Term Tidal-Height-Prediction-Based Decomposition Algorithms and Machine Learning Models

长期预测 计算机科学 算法 期限(时间) 人工神经网络 分解 模式(计算机接口) 时间序列 系列(地层学) 人工智能 机器学习 地质学 生物 操作系统 电信 生态学 古生物学 物理 量子力学
作者
Wenchao Ban,Lei Shen,Fan Lü,X. Liu,Yun Pan
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (12): 3045-3045 被引量:1
标识
DOI:10.3390/rs15123045
摘要

Tidal-level prediction is crucial for ensuring the safety and efficiency of offshore marine activities, port and channel management, water transportation resource development, and life-saving operations. Although tidal harmonic analysis is among the most prevalent methods for predicting tidal water level fluctuations, it relies on extensive data, and its long-term prediction accuracy can be limited. To enhance prediction performance, this paper proposes a model that combines the variational mode decomposition (VMD) algorithm with the long short-term memory (LSTM) neural network. The initial step involves decomposing the original data using the VMD algorithm, followed by applying the LSTM to each decomposition component. Finally, all prediction results are superimposed and summed. The model is tested using the 2018 tidal time series data from the Lvsi station in Zhoushan City and the 2020 tidal time series data from the Ganpu station. The results are compared with those from the classical harmonic analysis model, the traditional machine learning model, and the decomposition-based machine learning method. The experimental outcomes demonstrate the superior predictive capabilities of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
大钱哥发布了新的文献求助10
7秒前
充电宝应助安静真采纳,获得10
7秒前
8秒前
8秒前
粱烨华发布了新的文献求助10
9秒前
9秒前
王玉娇发布了新的文献求助10
13秒前
Frieren完成签到 ,获得积分10
14秒前
大钱哥完成签到,获得积分10
15秒前
可爱的函函应助粱烨华采纳,获得10
16秒前
17秒前
111发布了新的文献求助10
17秒前
19秒前
科研通AI6应助整齐便当采纳,获得10
22秒前
musicyy222发布了新的文献求助30
23秒前
闪闪的鹏博完成签到,获得积分10
25秒前
bkagyin应助yannnis采纳,获得10
25秒前
28秒前
28秒前
科研通AI6应助fujun0095采纳,获得10
31秒前
Yuan完成签到 ,获得积分10
32秒前
学术地雷发布了新的文献求助10
33秒前
随性发布了新的文献求助30
34秒前
111完成签到,获得积分10
37秒前
SY15732023811完成签到 ,获得积分10
37秒前
敷衍完成签到 ,获得积分10
37秒前
Lucas应助追寻的白安采纳,获得10
39秒前
冷酷莫言发布了新的文献求助10
40秒前
43秒前
zw发布了新的文献求助10
43秒前
西瓜刀完成签到 ,获得积分10
44秒前
xiaojie发布了新的文献求助10
47秒前
47秒前
雪海发布了新的文献求助10
47秒前
老坛完成签到 ,获得积分10
49秒前
50秒前
LEMONQ完成签到 ,获得积分10
51秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645517
关于积分的说明 14675412
捐赠科研通 4586664
什么是DOI,文献DOI怎么找? 2516501
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951