CT Lung Nodule Segmentation: A Comparative Study of Data Preprocessing and Deep Learning Models

分割 肺癌 计算机科学 预处理器 人工智能 模式识别(心理学) 深度学习 结核(地质) 计算机辅助设计 图像分割 放射科 医学 病理 内科学 古生物学 工程制图 工程类 生物
作者
Weihao Chen,Yu Wang,Dingcheng Tian,Yu‐Dong Yao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 34925-34931 被引量:7
标识
DOI:10.1109/access.2023.3265170
摘要

The number of deaths from lung cancer reached 1.8 million in 2020, ranking first among all cancers. Early diagnosis has been found to improve the survival rate of lung cancer patients after treatment in clinical care. Computed tomography (CT) is a technique commonly used in the early detection of lung cancer to determine the benignity or malignancy of lung nodules. Manual analysis of CT results is less efficient and its accuracy is affected by physicians’ experience levels. Segmenting lung nodules in a computer-aided diagnosis (CAD) system can effectively improve the efficiency and accuracy of the diagnosis. In this paper, we evaluate several deep learning segmentation models (including UNet, SegNet, GCN, FCN, DeepLabV3+, PspNet TransUNet, SwinNet) and examine the effects of different preprocessing methods on the models to explore the best preprocessing and training strategies for lung nodule segmentation. Specifically, we investigate the effects of two different data preprocessing methods (adding a lung mask and croping the region of interest) on the segmentation results, where better segmentation results are achieved by including the nodal data of the region of interest without the lung mask. Through a comprehensive comparison, TransUNet achieves the best segmentation accuracy, with DICE indices of 0.887, 0.871, 0.75, and 0.744 tested on four datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助abcdefghi__lmnop采纳,获得10
2秒前
doby发布了新的文献求助10
3秒前
4秒前
SCI完成签到 ,获得积分10
5秒前
6秒前
6秒前
doby完成签到,获得积分10
8秒前
叶y完成签到,获得积分20
9秒前
thx发布了新的文献求助40
10秒前
柒月发布了新的文献求助10
11秒前
姚玲完成签到,获得积分10
11秒前
越遇完成签到 ,获得积分10
12秒前
tt666完成签到,获得积分10
13秒前
14秒前
ste56完成签到,获得积分10
16秒前
ED应助科研通管家采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
利利应助科研通管家采纳,获得10
19秒前
19秒前
ED应助科研通管家采纳,获得10
19秒前
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
yookia应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得30
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得30
19秒前
tiantian完成签到,获得积分10
25秒前
打打应助我要发nature采纳,获得10
26秒前
札七发布了新的文献求助10
26秒前
wasfey完成签到,获得积分10
28秒前
小韩同学完成签到,获得积分10
33秒前
依依发布了新的文献求助10
35秒前
迷你的小兔子完成签到,获得积分10
38秒前
38秒前
CX完成签到,获得积分10
39秒前
40秒前
kk完成签到,获得积分10
40秒前
哎哟很烦完成签到,获得积分10
41秒前
打打应助Sience采纳,获得10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150