Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer

逻辑回归 医学 接收机工作特性 乳腺癌 置信区间 回归 回归分析 放射科 癌症 内科学 机器学习 统计 计算机科学 数学
作者
Chen Liu,Xiaomei Huang,Xiaobo Chen,Zhenwei Shi,Chunling Liu,Yanting Liang,Xin Huang,Minglei Chen,Xin Chen,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S62-S70 被引量:3
标识
DOI:10.1016/j.acra.2023.02.024
摘要

To develop an easy-to-use model by combining pretreatment MRI and clinicopathologic features for early prediction of tumor regression pattern to neoadjuvant chemotherapy (NAC) in breast cancer.We retrospectively analyzed 420 patients who received NAC and underwent definitive surgery in our hospital from February 2012 to August 2020. Pathologic findings of surgical specimens were used as the gold standard to classify tumor regression patterns into concentric and non-concentric shrinkage. Morphologic and kinetic MRI features were both analyzed. Univariable and multivariable analyses were performed to select the key clinicopathologic and MRI features for pretreatment prediction of regression pattern. Logistic regression and six machine learning methods were used to construct prediction models, and their performance were evaluated with receiver operating characteristic curve.Two clinicopathologic variables and three MRI features were selected as independent predictors to construct prediction models. The apparent area under the curve (AUC) of seven prediction models were in the range of 0.669-0.740. The logistic regression model yielded an AUC of 0.708 (95% confidence interval [CI]: 0.658-0.759), and the decision tree model achieved the highest AUC of 0.740 (95% CI: 0.691-0.787). For internal validation, the optimism-corrected AUCs of seven models were in the range of 0.592-0.684. There was no significant difference between the AUCs of the logistic regression model and that of each machine learning model.Prediction models combining pretreatment MRI and clinicopathologic features are useful for predicting tumor regression pattern in breast cancer, which can assist to select patients who can benefit from NAC for de-escalation of breast surgery and modify treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力向前看完成签到,获得积分10
刚刚
2秒前
5秒前
5秒前
Nalisher完成签到,获得积分10
5秒前
5秒前
苗玉完成签到,获得积分10
7秒前
9秒前
王十发布了新的文献求助10
9秒前
甜美元灵发布了新的文献求助10
11秒前
nenoaowu发布了新的文献求助10
12秒前
黑色锅包肉完成签到 ,获得积分10
13秒前
欧阳铭完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
浮游应助nenoaowu采纳,获得10
16秒前
小二郎应助nenoaowu采纳,获得10
16秒前
smile发布了新的文献求助10
16秒前
小郭完成签到 ,获得积分10
16秒前
lustr完成签到 ,获得积分10
17秒前
完美世界应助嗯嗯的嗯嗯采纳,获得10
17秒前
我是老大应助光之剑采纳,获得10
17秒前
英姑应助花见月开采纳,获得10
18秒前
18秒前
chri发布了新的文献求助10
18秒前
zoe666应助Esther采纳,获得30
20秒前
20秒前
科目三应助Hobobi采纳,获得10
21秒前
游瑞涛完成签到,获得积分10
23秒前
大蘑菇炒小蘑菇完成签到,获得积分10
23秒前
lizi发布了新的文献求助10
24秒前
jiafang完成签到,获得积分10
24秒前
25秒前
嗯嗯的嗯嗯完成签到,获得积分10
27秒前
30秒前
30秒前
31秒前
33秒前
流体离子发电机完成签到,获得积分10
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134322
求助须知:如何正确求助?哪些是违规求助? 4335087
关于积分的说明 13505951
捐赠科研通 4172482
什么是DOI,文献DOI怎么找? 2287697
邀请新用户注册赠送积分活动 1288658
关于科研通互助平台的介绍 1229444