清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer

逻辑回归 医学 接收机工作特性 乳腺癌 置信区间 回归 回归分析 放射科 癌症 内科学 机器学习 统计 计算机科学 数学
作者
Chen Liu,Xiaomei Huang,Xiaobo Chen,Zhenwei Shi,Chunling Liu,Yanting Liang,Xin Huang,Minglei Chen,Xin Chen,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S62-S70 被引量:3
标识
DOI:10.1016/j.acra.2023.02.024
摘要

To develop an easy-to-use model by combining pretreatment MRI and clinicopathologic features for early prediction of tumor regression pattern to neoadjuvant chemotherapy (NAC) in breast cancer.We retrospectively analyzed 420 patients who received NAC and underwent definitive surgery in our hospital from February 2012 to August 2020. Pathologic findings of surgical specimens were used as the gold standard to classify tumor regression patterns into concentric and non-concentric shrinkage. Morphologic and kinetic MRI features were both analyzed. Univariable and multivariable analyses were performed to select the key clinicopathologic and MRI features for pretreatment prediction of regression pattern. Logistic regression and six machine learning methods were used to construct prediction models, and their performance were evaluated with receiver operating characteristic curve.Two clinicopathologic variables and three MRI features were selected as independent predictors to construct prediction models. The apparent area under the curve (AUC) of seven prediction models were in the range of 0.669-0.740. The logistic regression model yielded an AUC of 0.708 (95% confidence interval [CI]: 0.658-0.759), and the decision tree model achieved the highest AUC of 0.740 (95% CI: 0.691-0.787). For internal validation, the optimism-corrected AUCs of seven models were in the range of 0.592-0.684. There was no significant difference between the AUCs of the logistic regression model and that of each machine learning model.Prediction models combining pretreatment MRI and clinicopathologic features are useful for predicting tumor regression pattern in breast cancer, which can assist to select patients who can benefit from NAC for de-escalation of breast surgery and modify treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大侠完成签到 ,获得积分10
17秒前
JamesPei应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
wood完成签到,获得积分10
36秒前
CadoreK完成签到 ,获得积分10
36秒前
管靖易完成签到 ,获得积分10
1分钟前
阿里完成签到,获得积分10
1分钟前
冷傲的擎汉完成签到 ,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
uppercrusteve完成签到,获得积分10
1分钟前
青雾雨完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
炳灿完成签到 ,获得积分10
1分钟前
DHW1703701完成签到,获得积分10
1分钟前
荔枝励志完成签到 ,获得积分10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
闲人颦儿完成签到,获得积分0
2分钟前
ceeray23发布了新的文献求助20
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
似水流年完成签到 ,获得积分10
3分钟前
hzauhzau完成签到 ,获得积分10
3分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
william完成签到,获得积分10
5分钟前
红茸茸羊完成签到 ,获得积分10
5分钟前
休斯顿完成签到,获得积分10
5分钟前
friend516完成签到 ,获得积分10
5分钟前
氕氘氚完成签到 ,获得积分10
5分钟前
tiantian完成签到 ,获得积分10
5分钟前
千空完成签到 ,获得积分10
5分钟前
黑猫老师完成签到 ,获得积分10
5分钟前
彩色的芷容完成签到 ,获得积分10
6分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
JamesPei应助waxxi采纳,获得10
6分钟前
长毛象完成签到 ,获得积分10
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
ywzwszl完成签到,获得积分0
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614846
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551