Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer

逻辑回归 医学 接收机工作特性 乳腺癌 置信区间 回归 回归分析 放射科 癌症 内科学 机器学习 统计 计算机科学 数学
作者
Chen Liu,Xiaomei Huang,Xiaobo Chen,Zhenwei Shi,Chunling Liu,Yanting Liang,Xin Huang,Minglei Chen,Xin Chen,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S62-S70 被引量:1
标识
DOI:10.1016/j.acra.2023.02.024
摘要

To develop an easy-to-use model by combining pretreatment MRI and clinicopathologic features for early prediction of tumor regression pattern to neoadjuvant chemotherapy (NAC) in breast cancer.We retrospectively analyzed 420 patients who received NAC and underwent definitive surgery in our hospital from February 2012 to August 2020. Pathologic findings of surgical specimens were used as the gold standard to classify tumor regression patterns into concentric and non-concentric shrinkage. Morphologic and kinetic MRI features were both analyzed. Univariable and multivariable analyses were performed to select the key clinicopathologic and MRI features for pretreatment prediction of regression pattern. Logistic regression and six machine learning methods were used to construct prediction models, and their performance were evaluated with receiver operating characteristic curve.Two clinicopathologic variables and three MRI features were selected as independent predictors to construct prediction models. The apparent area under the curve (AUC) of seven prediction models were in the range of 0.669-0.740. The logistic regression model yielded an AUC of 0.708 (95% confidence interval [CI]: 0.658-0.759), and the decision tree model achieved the highest AUC of 0.740 (95% CI: 0.691-0.787). For internal validation, the optimism-corrected AUCs of seven models were in the range of 0.592-0.684. There was no significant difference between the AUCs of the logistic regression model and that of each machine learning model.Prediction models combining pretreatment MRI and clinicopathologic features are useful for predicting tumor regression pattern in breast cancer, which can assist to select patients who can benefit from NAC for de-escalation of breast surgery and modify treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到,获得积分10
刚刚
1秒前
1秒前
烟花应助xiaoxiao采纳,获得10
1秒前
NexusExplorer应助深夜诗人采纳,获得10
1秒前
玩命的毛衣完成签到 ,获得积分10
1秒前
2秒前
丁言笑完成签到,获得积分10
2秒前
机智发布了新的文献求助10
2秒前
小小发布了新的文献求助10
2秒前
SciGPT应助977采纳,获得10
3秒前
sound发布了新的文献求助10
4秒前
11111111111发布了新的文献求助10
4秒前
chen完成签到 ,获得积分10
4秒前
FashionBoy应助qq123采纳,获得10
5秒前
5秒前
秋子发布了新的文献求助10
5秒前
NUNKI发布了新的文献求助10
6秒前
小二郎应助dayueban采纳,获得10
6秒前
7秒前
豪哥大大发布了新的文献求助10
7秒前
Emma完成签到 ,获得积分10
7秒前
活力的妙芙完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
弈心发布了新的文献求助10
10秒前
一叶扁舟。完成签到,获得积分10
10秒前
10秒前
江上钓太公完成签到,获得积分10
10秒前
良辰应助小孟采纳,获得10
11秒前
话家完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
匆匆完成签到,获得积分10
11秒前
李健应助11111111111采纳,获得10
11秒前
12秒前
木子木子粒完成签到 ,获得积分10
12秒前
ivying0209完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304069
求助须知:如何正确求助?哪些是违规求助? 2938141
关于积分的说明 8486921
捐赠科研通 2612298
什么是DOI,文献DOI怎么找? 1426638
科研通“疑难数据库(出版商)”最低求助积分说明 662736
邀请新用户注册赠送积分活动 647301