已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer

逻辑回归 医学 接收机工作特性 乳腺癌 置信区间 回归 回归分析 放射科 癌症 内科学 机器学习 统计 计算机科学 数学
作者
Chen Liu,Xiaomei Huang,Xiaobo Chen,Zhenwei Shi,Chunling Liu,Yanting Liang,Xin Huang,Minglei Chen,Xin Chen,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S62-S70 被引量:3
标识
DOI:10.1016/j.acra.2023.02.024
摘要

To develop an easy-to-use model by combining pretreatment MRI and clinicopathologic features for early prediction of tumor regression pattern to neoadjuvant chemotherapy (NAC) in breast cancer.We retrospectively analyzed 420 patients who received NAC and underwent definitive surgery in our hospital from February 2012 to August 2020. Pathologic findings of surgical specimens were used as the gold standard to classify tumor regression patterns into concentric and non-concentric shrinkage. Morphologic and kinetic MRI features were both analyzed. Univariable and multivariable analyses were performed to select the key clinicopathologic and MRI features for pretreatment prediction of regression pattern. Logistic regression and six machine learning methods were used to construct prediction models, and their performance were evaluated with receiver operating characteristic curve.Two clinicopathologic variables and three MRI features were selected as independent predictors to construct prediction models. The apparent area under the curve (AUC) of seven prediction models were in the range of 0.669-0.740. The logistic regression model yielded an AUC of 0.708 (95% confidence interval [CI]: 0.658-0.759), and the decision tree model achieved the highest AUC of 0.740 (95% CI: 0.691-0.787). For internal validation, the optimism-corrected AUCs of seven models were in the range of 0.592-0.684. There was no significant difference between the AUCs of the logistic regression model and that of each machine learning model.Prediction models combining pretreatment MRI and clinicopathologic features are useful for predicting tumor regression pattern in breast cancer, which can assist to select patients who can benefit from NAC for de-escalation of breast surgery and modify treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助阿狸采纳,获得10
2秒前
jiangmi完成签到,获得积分10
2秒前
Z100关注了科研通微信公众号
5秒前
Omni发布了新的文献求助10
8秒前
9秒前
在水一方应助TN采纳,获得10
9秒前
leesc94完成签到 ,获得积分10
10秒前
11秒前
hy完成签到 ,获得积分10
11秒前
青雉流云完成签到,获得积分10
12秒前
Li发布了新的文献求助10
15秒前
科研通AI6应助Tulipe采纳,获得10
17秒前
18秒前
永远完成签到,获得积分10
22秒前
阿狸发布了新的文献求助10
23秒前
Akim应助开放的千青采纳,获得10
24秒前
25秒前
科研通AI6应助火星上仰采纳,获得10
25秒前
27秒前
27秒前
29秒前
咕哒猫应助佛光辉采纳,获得10
31秒前
lutuantuan完成签到,获得积分10
31秒前
yznfly应助ljq采纳,获得200
33秒前
33秒前
阿狸完成签到,获得积分10
34秒前
Ykaor完成签到 ,获得积分10
34秒前
36秒前
皮皮完成签到 ,获得积分10
36秒前
ljq完成签到,获得积分10
37秒前
Rye发布了新的文献求助10
42秒前
梦梦完成签到,获得积分10
44秒前
舒晓芸完成签到,获得积分20
45秒前
45秒前
46秒前
七七完成签到 ,获得积分10
48秒前
解你所忧完成签到 ,获得积分10
48秒前
冷酷哈密瓜完成签到,获得积分10
50秒前
52秒前
欧尼酱完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910