An Ensemble Learning Approach with Gradient Resampling for Class-Imbalance Problems

重采样 Boosting(机器学习) 计算机科学 机器学习 人工智能 集成学习 采样(信号处理) 班级(哲学) 样品(材料) 集合(抽象数据类型) 滤波器(信号处理) 算法 化学 色谱法 计算机视觉 程序设计语言
作者
Hongke Zhao,Chuang Zhao,Xi Zhang,Nanlin Liu,Hengshu Zhu,Qi Liu,Hui Xiong
出处
期刊:Informs Journal on Computing 卷期号:35 (4): 747-763 被引量:9
标识
DOI:10.1287/ijoc.2023.1274
摘要

Imbalanced classification is widely referred in many real-world applications and has been extensively studied. Most existing algorithms consider alleviating the imbalance by sampling or guiding ensemble learners with punishments. The combination of ensemble learning and sampling strategy at class level has achieved great progress. Actually, specific hard examples have little benefit for model learning and even degrade the performance. From the view of identifying classification difficulty of samples, one important motivation is to design algorithms to finely equip different samples with progressive learning. Unfortunately, how to perfectly configure the sampling and learning strategies under ensemble principles at the sample level remains a research gap. In this paper, we propose a new view from the sample level rather than class level in existing studies. We design an ensemble approach in pipe with sample-level gradient resampling, that is, balanced cascade with filters (BCWF). Before that, as a preliminary exploration, we first design a hard examples mining algorithm to explore the gradient distribution of classification difficulty of samples and identify the hard examples. Specifically, BCWF uses an under-sampling strategy and a boosting manner to train T predictive classifiers and reidentify hard examples. In BCWF, moreover, we design two types of filters: the first is assembled with a hard filter (BCWF_h), whereas the second is assembled with a soft filter (BCWF_s). In each round of boosting, BCWF_h strictly removes a gradient/set of the hardest examples from both classes, whereas BCWF_s removes a larger number of harder and easy examples simultaneously for final balanced-class retention. Consequently, the well-trained T predictive classifiers can be used with two ensemble voting strategies: average probability and majority vote. To evaluate the proposed approach, we conduct intensive experiments on 10 benchmark data sets and apply our algorithms to perform default user detection on a real-world peer to peer lending data set. The experimental results fully demonstrate the effectiveness and the managerial implications of our approach when compared with 11 competitive algorithms. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101176, 71722005, and 72241432], the National Key R&D program of China [Grant 2020YFA0908600] and the Natural Science Foundation of Tianjin City [Grant 18JCJQJC45900]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1274 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0104 ) at ( http://dx.doi.org/10.5281/zenodo.6360996 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang Mu发布了新的文献求助40
3秒前
3秒前
saying发布了新的文献求助10
5秒前
9秒前
bingbing完成签到,获得积分20
9秒前
小二郎应助fxd采纳,获得10
10秒前
10秒前
10秒前
11秒前
丘比特应助Cheney采纳,获得10
12秒前
13秒前
自觉的火龙果完成签到,获得积分10
14秒前
不开心完成签到,获得积分10
14秒前
周破儿完成签到 ,获得积分10
15秒前
626发布了新的文献求助10
15秒前
情怀应助包子采纳,获得10
16秒前
17秒前
18秒前
Ava应助清爽老九采纳,获得30
18秒前
19秒前
19秒前
大糖糕僧发布了新的文献求助10
19秒前
等待的小鸽子完成签到,获得积分10
21秒前
蟹蟹完成签到,获得积分10
21秒前
23秒前
23秒前
李爱国应助春风过客采纳,获得10
24秒前
韦雪莲发布了新的文献求助10
24秒前
花玥鹿完成签到,获得积分10
24秒前
626完成签到,获得积分20
25秒前
huang96应助eternity136采纳,获得20
27秒前
28秒前
29秒前
30秒前
Verdigris完成签到,获得积分10
31秒前
31秒前
sunlight完成签到,获得积分10
31秒前
聪明的金针菇完成签到,获得积分20
34秒前
CipherSage应助wuke采纳,获得30
35秒前
樱桃猴子应助棉花采纳,获得10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297339
求助须知:如何正确求助?哪些是违规求助? 2932768
关于积分的说明 8459060
捐赠科研通 2605549
什么是DOI,文献DOI怎么找? 1422392
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644677