An Ensemble Learning Approach with Gradient Resampling for Class-Imbalance Problems

重采样 Boosting(机器学习) 计算机科学 机器学习 人工智能 集成学习 采样(信号处理) 班级(哲学) 样品(材料) 集合(抽象数据类型) 滤波器(信号处理) 算法 计算机视觉 色谱法 化学 程序设计语言
作者
Hongke Zhao,Chuang Zhao,Xi Zhang,Nanlin Liu,Hengshu Zhu,Qi Liu,Hui Xiong
出处
期刊:Informs Journal on Computing 卷期号:35 (4): 747-763 被引量:9
标识
DOI:10.1287/ijoc.2023.1274
摘要

Imbalanced classification is widely referred in many real-world applications and has been extensively studied. Most existing algorithms consider alleviating the imbalance by sampling or guiding ensemble learners with punishments. The combination of ensemble learning and sampling strategy at class level has achieved great progress. Actually, specific hard examples have little benefit for model learning and even degrade the performance. From the view of identifying classification difficulty of samples, one important motivation is to design algorithms to finely equip different samples with progressive learning. Unfortunately, how to perfectly configure the sampling and learning strategies under ensemble principles at the sample level remains a research gap. In this paper, we propose a new view from the sample level rather than class level in existing studies. We design an ensemble approach in pipe with sample-level gradient resampling, that is, balanced cascade with filters (BCWF). Before that, as a preliminary exploration, we first design a hard examples mining algorithm to explore the gradient distribution of classification difficulty of samples and identify the hard examples. Specifically, BCWF uses an under-sampling strategy and a boosting manner to train T predictive classifiers and reidentify hard examples. In BCWF, moreover, we design two types of filters: the first is assembled with a hard filter (BCWF_h), whereas the second is assembled with a soft filter (BCWF_s). In each round of boosting, BCWF_h strictly removes a gradient/set of the hardest examples from both classes, whereas BCWF_s removes a larger number of harder and easy examples simultaneously for final balanced-class retention. Consequently, the well-trained T predictive classifiers can be used with two ensemble voting strategies: average probability and majority vote. To evaluate the proposed approach, we conduct intensive experiments on 10 benchmark data sets and apply our algorithms to perform default user detection on a real-world peer to peer lending data set. The experimental results fully demonstrate the effectiveness and the managerial implications of our approach when compared with 11 competitive algorithms. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101176, 71722005, and 72241432], the National Key R&D program of China [Grant 2020YFA0908600] and the Natural Science Foundation of Tianjin City [Grant 18JCJQJC45900]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1274 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0104 ) at ( http://dx.doi.org/10.5281/zenodo.6360996 ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
胡可完成签到 ,获得积分10
2秒前
lifenghou完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
17秒前
fdpb完成签到,获得积分10
19秒前
奇奇怪怪的大鱼完成签到,获得积分10
21秒前
zcydbttj2011完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
董耀文完成签到,获得积分10
25秒前
pliciyir完成签到 ,获得积分10
26秒前
出厂价完成签到,获得积分10
26秒前
Shaohan完成签到,获得积分10
28秒前
王继完成签到,获得积分10
28秒前
合适鲂完成签到,获得积分10
32秒前
卡卡西完成签到,获得积分10
32秒前
Yi完成签到,获得积分10
32秒前
背后如之完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
simon666完成签到,获得积分10
35秒前
maybe完成签到,获得积分10
35秒前
卡片完成签到,获得积分10
35秒前
MaxwellZH完成签到,获得积分10
36秒前
愤怒的水绿完成签到,获得积分10
39秒前
hahaha6789y完成签到,获得积分10
39秒前
junzzz完成签到 ,获得积分10
39秒前
霡霂完成签到,获得积分10
39秒前
BlueKitty完成签到,获得积分10
40秒前
Walton完成签到,获得积分10
41秒前
cl完成签到,获得积分10
41秒前
sheep完成签到,获得积分10
41秒前
Bake完成签到 ,获得积分10
41秒前
surlamper完成签到,获得积分10
42秒前
Mo完成签到,获得积分10
42秒前
hahaha2完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
42秒前
婉枫完成签到,获得积分10
43秒前
徐彬荣完成签到,获得积分10
43秒前
往昔不过微澜完成签到,获得积分10
43秒前
spider534完成签到,获得积分10
44秒前
好好应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797