An Ensemble Learning Approach with Gradient Resampling for Class-Imbalance Problems

重采样 Boosting(机器学习) 计算机科学 机器学习 人工智能 集成学习 采样(信号处理) 班级(哲学) 样品(材料) 集合(抽象数据类型) 滤波器(信号处理) 算法 计算机视觉 色谱法 化学 程序设计语言
作者
Hongke Zhao,Chuang Zhao,Xi Zhang,Nanlin Liu,Hengshu Zhu,Qi Liu,Hui Xiong
出处
期刊:Informs Journal on Computing 卷期号:35 (4): 747-763 被引量:9
标识
DOI:10.1287/ijoc.2023.1274
摘要

Imbalanced classification is widely referred in many real-world applications and has been extensively studied. Most existing algorithms consider alleviating the imbalance by sampling or guiding ensemble learners with punishments. The combination of ensemble learning and sampling strategy at class level has achieved great progress. Actually, specific hard examples have little benefit for model learning and even degrade the performance. From the view of identifying classification difficulty of samples, one important motivation is to design algorithms to finely equip different samples with progressive learning. Unfortunately, how to perfectly configure the sampling and learning strategies under ensemble principles at the sample level remains a research gap. In this paper, we propose a new view from the sample level rather than class level in existing studies. We design an ensemble approach in pipe with sample-level gradient resampling, that is, balanced cascade with filters (BCWF). Before that, as a preliminary exploration, we first design a hard examples mining algorithm to explore the gradient distribution of classification difficulty of samples and identify the hard examples. Specifically, BCWF uses an under-sampling strategy and a boosting manner to train T predictive classifiers and reidentify hard examples. In BCWF, moreover, we design two types of filters: the first is assembled with a hard filter (BCWF_h), whereas the second is assembled with a soft filter (BCWF_s). In each round of boosting, BCWF_h strictly removes a gradient/set of the hardest examples from both classes, whereas BCWF_s removes a larger number of harder and easy examples simultaneously for final balanced-class retention. Consequently, the well-trained T predictive classifiers can be used with two ensemble voting strategies: average probability and majority vote. To evaluate the proposed approach, we conduct intensive experiments on 10 benchmark data sets and apply our algorithms to perform default user detection on a real-world peer to peer lending data set. The experimental results fully demonstrate the effectiveness and the managerial implications of our approach when compared with 11 competitive algorithms. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101176, 71722005, and 72241432], the National Key R&D program of China [Grant 2020YFA0908600] and the Natural Science Foundation of Tianjin City [Grant 18JCJQJC45900]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1274 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0104 ) at ( http://dx.doi.org/10.5281/zenodo.6360996 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄家琪发布了新的文献求助10
刚刚
研友_Z6WWQ8完成签到,获得积分10
1秒前
领导范儿应助沸腾鱼采纳,获得10
1秒前
1秒前
海虎爆破拳完成签到,获得积分10
1秒前
wu完成签到,获得积分10
1秒前
Tracy完成签到,获得积分10
1秒前
MM发布了新的文献求助10
2秒前
summer发布了新的文献求助20
3秒前
粥粥完成签到,获得积分10
3秒前
lisier发布了新的文献求助10
4秒前
CCC完成签到,获得积分10
4秒前
Sunny完成签到,获得积分10
4秒前
德鲁大叔完成签到,获得积分10
4秒前
小蘑菇应助诺之采纳,获得10
5秒前
一只你个灰完成签到,获得积分10
5秒前
5秒前
火山羊完成签到,获得积分10
7秒前
木木完成签到,获得积分10
7秒前
脑洞疼应助thousandlong采纳,获得10
8秒前
WenzongLai完成签到,获得积分10
8秒前
8秒前
CipherSage应助fsky采纳,获得30
8秒前
酷波er应助紫紫采纳,获得10
8秒前
Owen应助Engen采纳,获得10
9秒前
归尘应助熊熊熊采纳,获得10
9秒前
9秒前
大大怪发布了新的文献求助10
10秒前
黄家琪关注了科研通微信公众号
11秒前
核电站完成签到,获得积分10
11秒前
11秒前
xv完成签到,获得积分10
11秒前
usee完成签到,获得积分10
11秒前
TZMY完成签到,获得积分10
11秒前
12秒前
丘比特应助MM采纳,获得10
12秒前
田様应助JoshuaChen采纳,获得10
13秒前
Ttttt完成签到,获得积分10
13秒前
瘦瘦依白应助爱吃脑袋瓜采纳,获得10
13秒前
哈哈是你发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582