An Ensemble Learning Approach with Gradient Resampling for Class-Imbalance Problems

重采样 Boosting(机器学习) 计算机科学 机器学习 人工智能 集成学习 采样(信号处理) 班级(哲学) 样品(材料) 集合(抽象数据类型) 滤波器(信号处理) 算法 计算机视觉 色谱法 化学 程序设计语言
作者
Hongke Zhao,Chuang Zhao,Xi Zhang,Nanlin Liu,Hengshu Zhu,Qi Liu,Hui Xiong
出处
期刊:Informs Journal on Computing 卷期号:35 (4): 747-763 被引量:9
标识
DOI:10.1287/ijoc.2023.1274
摘要

Imbalanced classification is widely referred in many real-world applications and has been extensively studied. Most existing algorithms consider alleviating the imbalance by sampling or guiding ensemble learners with punishments. The combination of ensemble learning and sampling strategy at class level has achieved great progress. Actually, specific hard examples have little benefit for model learning and even degrade the performance. From the view of identifying classification difficulty of samples, one important motivation is to design algorithms to finely equip different samples with progressive learning. Unfortunately, how to perfectly configure the sampling and learning strategies under ensemble principles at the sample level remains a research gap. In this paper, we propose a new view from the sample level rather than class level in existing studies. We design an ensemble approach in pipe with sample-level gradient resampling, that is, balanced cascade with filters (BCWF). Before that, as a preliminary exploration, we first design a hard examples mining algorithm to explore the gradient distribution of classification difficulty of samples and identify the hard examples. Specifically, BCWF uses an under-sampling strategy and a boosting manner to train T predictive classifiers and reidentify hard examples. In BCWF, moreover, we design two types of filters: the first is assembled with a hard filter (BCWF_h), whereas the second is assembled with a soft filter (BCWF_s). In each round of boosting, BCWF_h strictly removes a gradient/set of the hardest examples from both classes, whereas BCWF_s removes a larger number of harder and easy examples simultaneously for final balanced-class retention. Consequently, the well-trained T predictive classifiers can be used with two ensemble voting strategies: average probability and majority vote. To evaluate the proposed approach, we conduct intensive experiments on 10 benchmark data sets and apply our algorithms to perform default user detection on a real-world peer to peer lending data set. The experimental results fully demonstrate the effectiveness and the managerial implications of our approach when compared with 11 competitive algorithms. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101176, 71722005, and 72241432], the National Key R&D program of China [Grant 2020YFA0908600] and the Natural Science Foundation of Tianjin City [Grant 18JCJQJC45900]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1274 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0104 ) at ( http://dx.doi.org/10.5281/zenodo.6360996 ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光发布了新的文献求助10
刚刚
搜集达人应助温暖的煎饼采纳,获得10
刚刚
果奶绝甜完成签到,获得积分10
刚刚
JamesPei应助一路升桦采纳,获得10
1秒前
黎昕完成签到,获得积分10
1秒前
小汤发布了新的文献求助10
1秒前
wxz1998完成签到,获得积分10
1秒前
好吃的蛋挞完成签到,获得积分10
1秒前
浮游应助荔枝吖采纳,获得10
1秒前
pencil123完成签到,获得积分10
1秒前
zhuyanqi发布了新的文献求助20
2秒前
2秒前
犹豫的若男完成签到,获得积分10
2秒前
shenya0810应助坚强百褶裙采纳,获得10
2秒前
shenya0810应助鹅鹅鹅采纳,获得10
2秒前
ZXY发布了新的文献求助10
3秒前
化工兔完成签到,获得积分10
3秒前
lucky完成签到,获得积分10
3秒前
大模型应助闪闪的梦柏采纳,获得10
3秒前
3秒前
汉堡包应助醋酸柠檬采纳,获得10
3秒前
4秒前
min完成签到,获得积分10
4秒前
Camellia发布了新的文献求助10
4秒前
entang完成签到,获得积分10
4秒前
现代子默完成签到,获得积分10
4秒前
Jasper应助lia采纳,获得10
5秒前
5秒前
kjz发布了新的文献求助10
6秒前
6秒前
华仔应助好吃的蛋挞采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
田様应助123123采纳,获得10
6秒前
鳗鱼羿应助孔雀翎采纳,获得10
7秒前
圣人海完成签到,获得积分10
7秒前
Sylar完成签到,获得积分10
7秒前
无花果应助小新采纳,获得10
7秒前
7秒前
8秒前
稳重中心完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510567
求助须知:如何正确求助?哪些是违规求助? 4605250
关于积分的说明 14493621
捐赠科研通 4540414
什么是DOI,文献DOI怎么找? 2487980
邀请新用户注册赠送积分活动 1470238
关于科研通互助平台的介绍 1442645