Engineering Multifunctionality in MoSe2 Nanostructures Via Strategic Mn Doping for Electrochemical Energy Storage and Photosensing

兴奋剂 材料科学 光电流 费米能级 光电子学 载流子 纳米技术 杂原子 X射线光电子能谱 超级电容器 电极 电化学 电子 化学工程 化学 物理 物理化学 有机化学 工程类 量子力学 戒指(化学)
作者
Suvadip Masanta,Chumki Nayak,Soumyajit Maitra,Siddheswar Rudra,Debasree Chowdhury,Sreyan Raha,Mukul Pradhan,Biswarup Satpati,Prabir Pal,Achintya Singha
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (7): 5479-5492 被引量:14
标识
DOI:10.1021/acsanm.2c05592
摘要

To achieve advanced functionalities in nanostructured MoSe2 for enhanced electrochemical charge storage and improved photosensing, here we propose an effective strategy, i.e., the substitutional doping of the heteroatom Mn. We achieve a 313% increase in specific capacitance for 6.2% of Mn doping compared to pristine MoSe2 at the scan rate of 5 mV/s in a three-electrode configuration. For a two-electrode arrangement, also superior charge-storage performance is noted. The enhanced electrode performance can be attributed to the increase of electrical conductivity arising due to an increase of electron density for the n-type nature of Mn doping realized via an X-ray photoelectron spectroscopy study and density functional theory calculation. The latter one also unveils that Mn doping introduces catalytically active sites by disrupting homogeneous charge distribution over the topology of the MoSe2 basal plane contributing to better charge-storage performance. Mn doping-induced shift in the Fermi level of MoSe2 toward the conduction band also minimizes the contact barrier height signifying its improved capabilities for a photosensor device. Additionally, Mn doping causes alleviation of the charge-recombination process resulting in increase of photocarrier separation. As a result, we observe a 187% enhancement in the photocurrent and significantly higher responsivity and detectivity for 6.2% Mn-doped MoSe2 than its pristine counterpart. Our proposed doping strategy to modulate charge storage as well as photoresponse properties demonstrates high potential for MoSe2 along with other two-dimensional transition-metal dichalcogenides in developing next-generation energy-storage and optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助柚子采纳,获得10
刚刚
MADKAI发布了新的文献求助10
刚刚
1秒前
爆米花应助咕咕咕采纳,获得10
1秒前
zxy发布了新的文献求助10
1秒前
2秒前
醉人的仔发布了新的文献求助10
2秒前
daguan完成签到,获得积分10
2秒前
桐桐应助nikai采纳,获得10
2秒前
3秒前
4秒前
123完成签到,获得积分10
4秒前
善良香岚发布了新的文献求助10
4秒前
5秒前
5秒前
444完成签到,获得积分10
5秒前
任一发布了新的文献求助30
5秒前
莉莉发布了新的文献求助10
6秒前
Zoe发布了新的文献求助10
6秒前
Hover完成签到,获得积分10
6秒前
自然的茉莉完成签到,获得积分10
7秒前
7秒前
Mandy完成签到,获得积分10
7秒前
8秒前
脑洞疼应助qaq采纳,获得10
8秒前
世界尽头发布了新的文献求助10
8秒前
小二郎应助科研民工采纳,获得10
8秒前
9秒前
无奈满天发布了新的文献求助10
9秒前
10秒前
MADKAI发布了新的文献求助10
10秒前
10秒前
贪玩丸子完成签到,获得积分10
10秒前
神勇的雅香应助liutaili采纳,获得10
11秒前
KSGGS完成签到,获得积分10
11秒前
YANG关注了科研通微信公众号
11秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759