Current applications and future impact of machine learning in emerging contaminants: A review

可解释性 工作流程 计算机科学 生化工程 机器学习 风险分析(工程) 人工智能 工程类 医学 数据库
作者
Lang Lei,Ruirui Pang,Zhibang Han,Dong Wu,Bing Xie,Yinglong Su
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:53 (20): 1817-1835 被引量:10
标识
DOI:10.1080/10643389.2023.2190313
摘要

AbstractAbstractWith the continuous release into environments, emerging contaminants (ECs) have attracted widespread attention for the potential risks, and numerous studies have been conducted on their identification, environmental behavior bioeffects, and removal. Owing to the superiority of dealing with high-dimensional and unstructured data, a new data-driven approach, machine learning (ML), has been gradually applied in the research of ECs. This review described the fundamental principle, algorithms, and workflow of ML, and summarized advances of ML applications for typical ECs (per- and polyfluoroalkyl substances, nanoparticles, antibiotic resistance genes, endocrine-disrupting chemicals, microplastics, antibiotics, and pharmaceutical and personal care products). ML methods showed practicability, reliability, and effectiveness in predicting or analyzing the occurrence, distribution, bioeffects, and removal of ECs, and various algorithms and derived models were developed and optimized to obtain better performance. Moreover, the size and homogeneity of the data set strongly influence the application of ML, and choosing the appropriate ML models with different characteristics is crucial for addressing specific problems related to the data sets. Future efforts should focus on improving the quality of data set and adopting more advanced algorithms, developing the potential of quantitative structure-activity relationship, and promoting the applicability domains and interpretability of models. In addition, the development of codeless ML tools will benefit the accessibility of ML models.Graphical AbstractKeywords: Bioeffectsemerging contaminantsenvironmental behavioridentificationmachine learningremoval technologiesHandling Editors: Frederic Coulon and Lena Q. Ma Additional informationFundingThis work was financially supported by the Natural Science Foundation of Shanghai (22ZR1420700), Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste (19DZ2254400), Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (SKLEC-KF202011), Natural Science Foundation Project of CQ (CSTC2021JCYJ-MSXMX0726), and Fundamental Research Funds for the Central Universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助邓飞云采纳,获得10
3秒前
nk完成签到 ,获得积分10
3秒前
leon完成签到,获得积分10
4秒前
5秒前
王翎力发布了新的文献求助10
5秒前
freedom完成签到,获得积分10
5秒前
蓬荜生辉完成签到,获得积分10
7秒前
进击的DOPA完成签到,获得积分10
8秒前
没有你沉完成签到,获得积分10
8秒前
9秒前
9秒前
sjj发布了新的文献求助30
9秒前
11秒前
三毛完成签到 ,获得积分20
11秒前
大黄发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
专注学习发布了新的文献求助10
13秒前
dwls发布了新的文献求助10
13秒前
丘比特应助可耐的毛衣采纳,获得10
14秒前
搜集达人应助RJL采纳,获得10
14秒前
xiaojcom应助没有你沉采纳,获得10
15秒前
吃饭睡觉样样精通完成签到,获得积分10
16秒前
慕青应助轻松的凡英采纳,获得10
16秒前
rjtmu发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助zizizi采纳,获得10
17秒前
爆米花应助尽快毕业采纳,获得10
17秒前
Steve完成签到 ,获得积分10
17秒前
17秒前
晴空万里完成签到,获得积分20
19秒前
情怀应助ZhengSyHoe采纳,获得10
19秒前
纸之治治发布了新的文献求助10
21秒前
sci来发布了新的文献求助10
21秒前
22秒前
23秒前
慕青应助泡椒采纳,获得10
23秒前
26秒前
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627