Current applications and future impact of machine learning in emerging contaminants: A review

可解释性 工作流程 计算机科学 生化工程 机器学习 风险分析(工程) 人工智能 工程类 医学 数据库
作者
Lang Lei,Ruirui Pang,Zhibang Han,Dong Wu,Bing Xie,Yinglong Su
出处
期刊:Critical Reviews in Environmental Science and Technology [Taylor & Francis]
卷期号:53 (20): 1817-1835 被引量:25
标识
DOI:10.1080/10643389.2023.2190313
摘要

With the continuous release into environments, emerging contaminants (ECs) have attracted widespread attention for the potential risks, and numerous studies have been conducted on their identification, environmental behavior bioeffects, and removal. Owing to the superiority of dealing with high-dimensional and unstructured data, a new data-driven approach, machine learning (ML), has been gradually applied in the research of ECs. This review described the fundamental principle, algorithms, and workflow of ML, and summarized advances of ML applications for typical ECs (per- and polyfluoroalkyl substances, nanoparticles, antibiotic resistance genes, endocrine-disrupting chemicals, microplastics, antibiotics, and pharmaceutical and personal care products). ML methods showed practicability, reliability, and effectiveness in predicting or analyzing the occurrence, distribution, bioeffects, and removal of ECs, and various algorithms and derived models were developed and optimized to obtain better performance. Moreover, the size and homogeneity of the data set strongly influence the application of ML, and choosing the appropriate ML models with different characteristics is crucial for addressing specific problems related to the data sets. Future efforts should focus on improving the quality of data set and adopting more advanced algorithms, developing the potential of quantitative structure-activity relationship, and promoting the applicability domains and interpretability of models. In addition, the development of codeless ML tools will benefit the accessibility of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱学习完成签到,获得积分10
3秒前
yu完成签到 ,获得积分10
3秒前
慕容飞凤完成签到,获得积分10
4秒前
跳跃太清完成签到 ,获得积分10
7秒前
livra1058完成签到,获得积分10
8秒前
waitstill完成签到,获得积分10
9秒前
cxdhxu完成签到 ,获得积分10
9秒前
10秒前
Flyzhang完成签到,获得积分10
10秒前
整点儿薯条完成签到,获得积分10
10秒前
freshman3005完成签到,获得积分10
10秒前
内向怀曼完成签到,获得积分10
10秒前
Tal完成签到,获得积分10
10秒前
犇骉完成签到,获得积分10
10秒前
wukebini完成签到,获得积分10
11秒前
11秒前
晓风完成签到,获得积分10
11秒前
11秒前
李健应助科研通管家采纳,获得10
14秒前
开心浩阑应助科研通管家采纳,获得20
14秒前
xzy998应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
15秒前
沈彬彬发布了新的文献求助10
15秒前
犇骉发布了新的文献求助10
16秒前
温眼张完成签到,获得积分10
16秒前
莫等闲完成签到,获得积分10
18秒前
简单幸福完成签到 ,获得积分10
18秒前
金色天际线完成签到,获得积分10
19秒前
liuchao完成签到,获得积分10
19秒前
不安的大白菜真实的钥匙完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
Lanny完成签到 ,获得积分10
22秒前
上官若男应助wsqg123采纳,获得10
22秒前
Nayvue完成签到,获得积分10
24秒前
去码头整点薯条完成签到 ,获得积分10
25秒前
勤恳立轩完成签到,获得积分10
25秒前
彩色亿先完成签到 ,获得积分10
28秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027