亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Malignancy of Thyroid Micronodules: Radiomics Analysis Based on Two Types of Ultrasound Elastography Images

列线图 弹性成像 医学 放射科 恶性肿瘤 逻辑回归 超声波 接收机工作特性 判别式 无线电技术 人工智能 肿瘤科 计算机科学 内科学
作者
Xian‐Ya Zhang,Di Zhang,Lin-Zhi Han,Ying-Sha Pan,Wei Qi,Wenzhi Lv,Christoph F. Dietrich,Zhiyuan Wang,Xin‐Wu Cui
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (10): 2156-2168 被引量:10
标识
DOI:10.1016/j.acra.2023.02.001
摘要

Rationale and Objectives To develop a multimodal ultrasound radiomics nomogram for accurate classification of thyroid micronodules. Materials and Methods A retrospective study including 181 thyroid micronodules within 179 patients was conducted. Radiomics features were extracted from strain elastography (SE), shear wave elastography (SWE) and B-mode ultrasound (BMUS) images. Minimum redundancy maximum relevance and least absolute shrinkage and selection operator algorithms were used to select malignancy-related features. BMUS, SE, and SWE radiomics scores (Rad-scores) were then constructed. Multivariable logistic regression was conducted using radiomics signatures along with clinical data, and a nomogram was ultimately established. The calibration, discriminative, and clinical usefulness were considered to evaluate its performance. A clinical prediction model was also built using independent clinical risk factors for comparison. Results An aspect ratio ≥ 1, mean elasticity index, BMUS Rad-score, SE Rad-score, and SWE Rad-score were identified as the independent predictors for predicting malignancy of thyroid micronodules by multivariable logistic regression. The radiomics nomogram based on these characteristics showed favorable calibration and discriminative capabilities (AUCs: 0.903 and 0.881 for training and validation cohorts, respectively), all outperforming clinical prediction model (AUCs: 0.791 and 0.626, respectively). The decision curve analysis also confirmed clinical usefulness of the nomogram. The significant improvement of net reclassification index and integrated discriminatory improvement indicated that multimodal ultrasound radiomics signatures might work as new imaging markers for classifying thyroid micronodules. Conclusion The nomogram combining multimodal ultrasound radiomics features and clinical factors has the potential to be used for accurate diagnosis of thyroid micronodules in the clinic. To develop a multimodal ultrasound radiomics nomogram for accurate classification of thyroid micronodules. A retrospective study including 181 thyroid micronodules within 179 patients was conducted. Radiomics features were extracted from strain elastography (SE), shear wave elastography (SWE) and B-mode ultrasound (BMUS) images. Minimum redundancy maximum relevance and least absolute shrinkage and selection operator algorithms were used to select malignancy-related features. BMUS, SE, and SWE radiomics scores (Rad-scores) were then constructed. Multivariable logistic regression was conducted using radiomics signatures along with clinical data, and a nomogram was ultimately established. The calibration, discriminative, and clinical usefulness were considered to evaluate its performance. A clinical prediction model was also built using independent clinical risk factors for comparison. An aspect ratio ≥ 1, mean elasticity index, BMUS Rad-score, SE Rad-score, and SWE Rad-score were identified as the independent predictors for predicting malignancy of thyroid micronodules by multivariable logistic regression. The radiomics nomogram based on these characteristics showed favorable calibration and discriminative capabilities (AUCs: 0.903 and 0.881 for training and validation cohorts, respectively), all outperforming clinical prediction model (AUCs: 0.791 and 0.626, respectively). The decision curve analysis also confirmed clinical usefulness of the nomogram. The significant improvement of net reclassification index and integrated discriminatory improvement indicated that multimodal ultrasound radiomics signatures might work as new imaging markers for classifying thyroid micronodules. The nomogram combining multimodal ultrasound radiomics features and clinical factors has the potential to be used for accurate diagnosis of thyroid micronodules in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
satohoang发布了新的文献求助10
1秒前
5秒前
科研通AI5应助wise111采纳,获得10
8秒前
鲁丁丁完成签到 ,获得积分10
8秒前
satohoang完成签到,获得积分10
10秒前
10秒前
iwaking完成签到,获得积分10
10秒前
10秒前
zong240221完成签到 ,获得积分10
17秒前
大怪兽发布了新的文献求助10
17秒前
Sybsy发布了新的文献求助10
23秒前
亚雄完成签到,获得积分10
23秒前
xjz240221完成签到 ,获得积分10
27秒前
Ava应助Sybsy采纳,获得10
32秒前
瘦瘦白薇完成签到 ,获得积分10
38秒前
小易完成签到,获得积分10
41秒前
46秒前
境由心生发布了新的文献求助10
50秒前
文欣完成签到 ,获得积分10
51秒前
罗哈哈完成签到,获得积分20
53秒前
ferritin完成签到 ,获得积分10
56秒前
想游泳的鹰完成签到,获得积分10
1分钟前
HuY完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zho应助大怪兽采纳,获得30
1分钟前
孟筱完成签到 ,获得积分10
1分钟前
1分钟前
JamesPei应助James采纳,获得10
1分钟前
吕绪特完成签到 ,获得积分10
1分钟前
wise111发布了新的文献求助10
1分钟前
1分钟前
冰雪痕完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得46
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736596
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10019999
捐赠科研通 2997226
什么是DOI,文献DOI怎么找? 1644486
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749646