Riesz-Quincunx-UNet Variational Autoencoder for Unsupervised Satellite Image Denoising

人工智能 计算机科学 小波变换 模式识别(心理学) 小波 降噪 图像复原 计算机视觉 图像分割 数学 图像处理 分割 图像(数学)
作者
Duy Hoang Thai,Xiqi Fei,Minh Tri Le,Andreas Züfle,Konrad Wessels
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:4
标识
DOI:10.1109/tgrs.2023.3291309
摘要

Multiresolution deep learning approaches, such as the U-Net architecture, have achieved high performance in classifying and segmenting images. However, these approaches do not provide a latent image representation and cannot be used to decompose, denoise, and reconstruct image data. The U-Net and other convolutional neural network (CNNs) architectures commonly use pooling to enlarge the receptive field, which usually results in irreversible information loss. This study proposes to include a Riesz-Quincunx (RQ) wavelet transform, which combines 1) higher-order Riesz wavelet transform and 2) orthogonal Quincunx wavelets (which have both been used to reduce blur in medical images) inside the U-net architecture, to reduce noise in satellite images and their time-series. In the transformed feature space, we propose a variational approach to understand how random perturbations of the features affect the image to further reduce noise. Combining both approaches, we introduce a hybrid RQUNet-VAE scheme for image and time series decomposition used to reduce noise in satellite imagery. We present qualitative and quantitative experimental results that demonstrate that our proposed RQUNet-VAE was more effective at reducing noise in satellite imagery compared to other state-of-the-art methods. We also apply our scheme to several applications for multi-band satellite images, including: image denoising, image and time-series decomposition by diffusion and image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助陈氏采纳,获得10
刚刚
刚刚
帆蚌侠发布了新的文献求助10
1秒前
建辰十五完成签到,获得积分10
1秒前
科研通AI2S应助dwls采纳,获得10
2秒前
2秒前
2秒前
明亮的卿发布了新的文献求助10
3秒前
歪歪扣叉完成签到 ,获得积分10
3秒前
4秒前
maqin发布了新的文献求助10
4秒前
兮兮完成签到,获得积分10
4秒前
华仔应助章章采纳,获得10
5秒前
shiko完成签到 ,获得积分10
5秒前
香蕉觅云应助weixin112233采纳,获得10
5秒前
彭于晏应助白潇潇采纳,获得10
5秒前
建辰十五发布了新的文献求助10
5秒前
6秒前
CTT完成签到,获得积分20
6秒前
6秒前
静待花开发布了新的文献求助10
7秒前
知识四面八方来完成签到 ,获得积分10
7秒前
7秒前
anan完成签到,获得积分10
7秒前
医皛生发布了新的文献求助10
7秒前
8秒前
俊逸凌雪发布了新的文献求助30
9秒前
9秒前
狂野萤应助Ackeley采纳,获得10
10秒前
10秒前
眼睛大鹤发布了新的文献求助10
11秒前
123jopop完成签到,获得积分10
12秒前
NexusExplorer应助马迦南采纳,获得10
13秒前
13秒前
biabo发布了新的文献求助10
14秒前
陈氏发布了新的文献求助10
16秒前
认真代曼发布了新的文献求助10
16秒前
popo完成签到,获得积分10
17秒前
大方念云应助白潇潇采纳,获得10
18秒前
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248