3D printing of continuous cellulose fibre composites: microstructural and mechanical characterisation

材料科学 复合材料 极限抗拉强度 复合数 熔融沉积模型 3D打印 纤维素 抗弯强度 聚合物 化学工程 工程类
作者
Fabienne Touchard,Damien Marchand,Laurence Chocinski–Arnault,Teddy Fournier,Christophe Magro
出处
期刊:Rapid Prototyping Journal [Emerald (MCB UP)]
卷期号:29 (9): 1879-1887
标识
DOI:10.1108/rpj-04-2023-0121
摘要

Purpose Additive manufacturing is a recent technology used in the production of composite materials. The use of continuous fibres as reinforcement is necessary to achieve high mechanical performance. However, making these materials more environmentally friendly is still challenging. The purpose of this study was to investigate the feasibility of 3D printing a composite made of continuous regenerated cellulose fibres using a standard 3D printer generally used for printing polymers. Design/methodology/approach The production process was based on a pre-impregnated filament made from a tape containing continuous cellulose fibres and Pebax ® matrix. 3D printed composite samples were fabricated using fused deposition modelling. The tape, filament and 3D printed composites were first analysed by means of modulated differential scanning calorimetry and micrography. Tensile tests were then performed, and the mechanical characteristics were determined at each step of the production process. Fracture surfaces were investigated by field-emission gun–scanning electron microscopy. Findings Results showed that the mechanical behaviour of the material was maintained throughout the production process, and the 3D printed biocomposites had a stiffness equivalent to that of traditionally manufactured continuous cellulose fibre composites. The obtained 3D printed composites showed an increase in strength value by a factor of 4 and in tensile modulus by a factor of 20 compared to those of unreinforced Pebax ® polymer. Originality/value This paper demonstrates the feasibility of 3D printing composites based on continuous cellulose fibres, paving the way for new biocomposites made by additive manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尹天扬完成签到,获得积分10
2秒前
2秒前
大方大船完成签到,获得积分10
3秒前
Sigyn完成签到,获得积分10
3秒前
顺利琦发布了新的文献求助10
3秒前
3秒前
自由完成签到,获得积分20
4秒前
Volta_zz完成签到,获得积分10
4秒前
4秒前
欣欣子完成签到,获得积分10
5秒前
6秒前
111完成签到 ,获得积分10
6秒前
6秒前
柔弱煎饼发布了新的文献求助30
7秒前
7秒前
曹梦梦完成签到,获得积分10
7秒前
7秒前
风趣霆完成签到,获得积分10
8秒前
8秒前
8秒前
小二郎应助Sigyn采纳,获得10
8秒前
科研通AI5应助不对也没错采纳,获得10
8秒前
lyn完成签到,获得积分20
8秒前
9秒前
隐形觅翠完成签到,获得积分10
9秒前
刘鹏宇发布了新的文献求助10
9秒前
lizh187完成签到 ,获得积分10
9秒前
北城完成签到,获得积分10
9秒前
自由发布了新的文献求助10
10秒前
10秒前
小豆芽儿发布了新的文献求助10
10秒前
WNL发布了新的文献求助10
11秒前
Ngu完成签到,获得积分10
11秒前
科研通AI5应助冷艳后妈采纳,获得10
11秒前
陶1122发布了新的文献求助10
11秒前
万能图书馆应助乐观期待采纳,获得30
11秒前
krystal完成签到,获得积分10
11秒前
学术大小拿完成签到,获得积分10
12秒前
迪迦完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678