材料科学
复合材料
极限抗拉强度
复合数
熔融沉积模型
3D打印
纤维素
抗弯强度
聚合物
化学工程
工程类
作者
Fabienne Touchard,Damien Marchand,Laurence Chocinski–Arnault,Teddy Fournier,Christophe Magro
出处
期刊:Rapid Prototyping Journal
[Emerald (MCB UP)]
日期:2023-07-17
卷期号:29 (9): 1879-1887
标识
DOI:10.1108/rpj-04-2023-0121
摘要
Purpose Additive manufacturing is a recent technology used in the production of composite materials. The use of continuous fibres as reinforcement is necessary to achieve high mechanical performance. However, making these materials more environmentally friendly is still challenging. The purpose of this study was to investigate the feasibility of 3D printing a composite made of continuous regenerated cellulose fibres using a standard 3D printer generally used for printing polymers. Design/methodology/approach The production process was based on a pre-impregnated filament made from a tape containing continuous cellulose fibres and Pebax ® matrix. 3D printed composite samples were fabricated using fused deposition modelling. The tape, filament and 3D printed composites were first analysed by means of modulated differential scanning calorimetry and micrography. Tensile tests were then performed, and the mechanical characteristics were determined at each step of the production process. Fracture surfaces were investigated by field-emission gun–scanning electron microscopy. Findings Results showed that the mechanical behaviour of the material was maintained throughout the production process, and the 3D printed biocomposites had a stiffness equivalent to that of traditionally manufactured continuous cellulose fibre composites. The obtained 3D printed composites showed an increase in strength value by a factor of 4 and in tensile modulus by a factor of 20 compared to those of unreinforced Pebax ® polymer. Originality/value This paper demonstrates the feasibility of 3D printing composites based on continuous cellulose fibres, paving the way for new biocomposites made by additive manufacturing.
科研通智能强力驱动
Strongly Powered by AbleSci AI