A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments

计算机科学 差异进化 弹道 数学优化 水准点(测量) 轨迹优化 避障 运动规划 渡线 粒子群优化 地形 人工智能 算法 最优控制 移动机器人 机器人 数学 天文 生物 物理 生态学 大地测量学 地理
作者
Miaohan Zhang,Yuhang Han,Shiyun Chen,Mingxian Liu,Zhaolei He,Nan Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106672-106672 被引量:18
标识
DOI:10.1016/j.engappai.2023.106672
摘要

In response to the complexity of power repair in mountainous areas and the limitations of traditional vehicles due to terrain constraints, this study focuses on the three-dimensional trajectory planning problem of UAVs (Unmanned Aerial Vehicles) in mountainous environments. Our goal is to provide effective solutions for the trajectory planning problem of UAVs in mountainous environments. Firstly, a UAV trajectory planning model is established, incorporating optimization objectives such as energy consumption, trajectory cost, obstacle avoidance cost, smoothing cost, and stability cost. The trajectory planning problem is transformed into an objective function optimization task with multiple performance constraints. To overcome the inefficiency and infeasibility of traditional algorithms in solving complex three-dimensional flight environments, we propose improvements to the Differential Evolution (DE) algorithm through three strategies: incorporating mutation crossover factor optimization strategy, an adaptive guidance mechanism, and an elite disturbance mechanism based on population classification. The Multi-Strategy Improved Differential Evolution (MSIDE) algorithm is introduced, and its time and space complexity are analyzed. Finally, the proposed method is compared with various algorithms through benchmark functions tests, Friedman test, Wilcoxon rank-sum test, simulation experiments in three-dimensional environments, and parameter sensitivity analysis experiments. The simulation results show that compared with the current state-of-the-art algorithms, the MSIDE algorithm improves the objective function value by 11.34% on average in regular terrain and 5.04% on average in complex terrain environments. The results demonstrate the convergence, multi-objective search capability, and global search ability of MSIDE, validating its effectiveness in solving the trajectory planning problem of UAVs in complex mountainous environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘小姐发布了新的文献求助10
刚刚
落寞水之完成签到 ,获得积分20
刚刚
smottom应助YELLOW采纳,获得10
1秒前
1秒前
michael发布了新的文献求助30
1秒前
1秒前
xhy完成签到,获得积分20
1秒前
葛儿完成签到 ,获得积分10
1秒前
Jasper应助XA采纳,获得10
2秒前
青丝完成签到,获得积分10
2秒前
百事可乐发布了新的文献求助10
2秒前
2秒前
Kelo完成签到,获得积分10
3秒前
拓扑超导相变完成签到 ,获得积分10
3秒前
zzz发布了新的文献求助10
3秒前
yq完成签到 ,获得积分10
4秒前
NiKo发布了新的文献求助10
4秒前
abb发布了新的文献求助10
4秒前
4秒前
大个应助酷酷采纳,获得10
4秒前
5秒前
娜娜发布了新的文献求助10
5秒前
越瑟淳潔完成签到 ,获得积分10
5秒前
5秒前
漫漫发布了新的文献求助10
5秒前
善学以致用应助欧阳铭采纳,获得10
6秒前
Ryo发布了新的文献求助10
6秒前
6秒前
eagle14835完成签到,获得积分10
6秒前
共享精神应助cdbb采纳,获得10
6秒前
希望天下0贩的0应助如梦采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
栖迟完成签到 ,获得积分10
7秒前
虚心的若翠完成签到,获得积分10
7秒前
7秒前
Jared发布了新的文献求助10
7秒前
俊逸的无心完成签到,获得积分20
8秒前
Balance Man完成签到 ,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210