A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments

计算机科学 差异进化 弹道 数学优化 水准点(测量) 轨迹优化 避障 运动规划 渡线 粒子群优化 地形 人工智能 算法 最优控制 移动机器人 机器人 数学 天文 生物 物理 生态学 大地测量学 地理
作者
Miaohan Zhang,Yuhang Han,Shiyun Chen,Mingxian Liu,Zhaolei He,Nan Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106672-106672 被引量:18
标识
DOI:10.1016/j.engappai.2023.106672
摘要

In response to the complexity of power repair in mountainous areas and the limitations of traditional vehicles due to terrain constraints, this study focuses on the three-dimensional trajectory planning problem of UAVs (Unmanned Aerial Vehicles) in mountainous environments. Our goal is to provide effective solutions for the trajectory planning problem of UAVs in mountainous environments. Firstly, a UAV trajectory planning model is established, incorporating optimization objectives such as energy consumption, trajectory cost, obstacle avoidance cost, smoothing cost, and stability cost. The trajectory planning problem is transformed into an objective function optimization task with multiple performance constraints. To overcome the inefficiency and infeasibility of traditional algorithms in solving complex three-dimensional flight environments, we propose improvements to the Differential Evolution (DE) algorithm through three strategies: incorporating mutation crossover factor optimization strategy, an adaptive guidance mechanism, and an elite disturbance mechanism based on population classification. The Multi-Strategy Improved Differential Evolution (MSIDE) algorithm is introduced, and its time and space complexity are analyzed. Finally, the proposed method is compared with various algorithms through benchmark functions tests, Friedman test, Wilcoxon rank-sum test, simulation experiments in three-dimensional environments, and parameter sensitivity analysis experiments. The simulation results show that compared with the current state-of-the-art algorithms, the MSIDE algorithm improves the objective function value by 11.34% on average in regular terrain and 5.04% on average in complex terrain environments. The results demonstrate the convergence, multi-objective search capability, and global search ability of MSIDE, validating its effectiveness in solving the trajectory planning problem of UAVs in complex mountainous environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大龙哥886应助Jonathan采纳,获得10
刚刚
Zhang完成签到,获得积分10
刚刚
浣熊小呆完成签到,获得积分10
刚刚
汉堡包应助纯真的雨采纳,获得10
刚刚
莫羽倾尘发布了新的文献求助10
1秒前
FashionBoy应助善良的凡旋采纳,获得10
1秒前
背影依旧那么帅完成签到,获得积分10
2秒前
3秒前
4秒前
Zhang发布了新的文献求助10
4秒前
Log完成签到,获得积分10
5秒前
丽丽完成签到,获得积分10
6秒前
jiang发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
含光无形发布了新的文献求助10
7秒前
无花果应助崔崔采纳,获得10
8秒前
dyfsj发布了新的文献求助10
8秒前
山中长青完成签到,获得积分10
8秒前
等待的小懒虫完成签到,获得积分10
9秒前
9秒前
9秒前
陶醉铁身发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
冷傲的从雪完成签到 ,获得积分10
12秒前
linjiaxin发布了新的文献求助10
12秒前
多多发布了新的文献求助10
12秒前
科研通AI6应助阿勒采纳,获得20
13秒前
时尚的初柔完成签到,获得积分10
13秒前
王佳俊完成签到,获得积分10
14秒前
Stella应助忧郁的平安采纳,获得10
15秒前
zgaolei发布了新的文献求助10
16秒前
陶醉铁身完成签到,获得积分10
17秒前
黄888888完成签到,获得积分10
20秒前
20秒前
寒冷青雪完成签到,获得积分10
21秒前
科研通AI2S应助xukaixuan001采纳,获得10
22秒前
enen发布了新的文献求助10
22秒前
WLWLW驳回了田様应助
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039