A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments

计算机科学 差异进化 弹道 数学优化 水准点(测量) 轨迹优化 避障 运动规划 渡线 粒子群优化 地形 人工智能 算法 最优控制 移动机器人 机器人 数学 生态学 物理 大地测量学 天文 生物 地理
作者
Miaohan Zhang,Yuhang Han,Shiyun Chen,Mingxian Liu,Zhaolei He,Nan Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106672-106672 被引量:10
标识
DOI:10.1016/j.engappai.2023.106672
摘要

In response to the complexity of power repair in mountainous areas and the limitations of traditional vehicles due to terrain constraints, this study focuses on the three-dimensional trajectory planning problem of UAVs (Unmanned Aerial Vehicles) in mountainous environments. Our goal is to provide effective solutions for the trajectory planning problem of UAVs in mountainous environments. Firstly, a UAV trajectory planning model is established, incorporating optimization objectives such as energy consumption, trajectory cost, obstacle avoidance cost, smoothing cost, and stability cost. The trajectory planning problem is transformed into an objective function optimization task with multiple performance constraints. To overcome the inefficiency and infeasibility of traditional algorithms in solving complex three-dimensional flight environments, we propose improvements to the Differential Evolution (DE) algorithm through three strategies: incorporating mutation crossover factor optimization strategy, an adaptive guidance mechanism, and an elite disturbance mechanism based on population classification. The Multi-Strategy Improved Differential Evolution (MSIDE) algorithm is introduced, and its time and space complexity are analyzed. Finally, the proposed method is compared with various algorithms through benchmark functions tests, Friedman test, Wilcoxon rank-sum test, simulation experiments in three-dimensional environments, and parameter sensitivity analysis experiments. The simulation results show that compared with the current state-of-the-art algorithms, the MSIDE algorithm improves the objective function value by 11.34% on average in regular terrain and 5.04% on average in complex terrain environments. The results demonstrate the convergence, multi-objective search capability, and global search ability of MSIDE, validating its effectiveness in solving the trajectory planning problem of UAVs in complex mountainous environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助聪明的惜芹采纳,获得10
2秒前
英姑应助雨淋沐风采纳,获得10
2秒前
2秒前
赵焱峥完成签到 ,获得积分10
6秒前
6秒前
秋霜玉发布了新的文献求助10
7秒前
香蕉觅云应助volition采纳,获得10
8秒前
加菲丰丰举报容荣求助涉嫌违规
9秒前
guchenniub发布了新的文献求助10
11秒前
李还好完成签到,获得积分10
12秒前
王烨完成签到 ,获得积分10
13秒前
16秒前
16秒前
Jessica英语好完成签到 ,获得积分10
17秒前
18秒前
quan发布了新的文献求助10
19秒前
苏楠发布了新的文献求助10
20秒前
TOMMY233发布了新的文献求助10
21秒前
加菲丰丰举报yuanyuan求助涉嫌违规
21秒前
24秒前
戴戴完成签到 ,获得积分10
26秒前
宁琳发布了新的文献求助10
26秒前
沐颜完成签到,获得积分10
28秒前
zhurui发布了新的文献求助10
28秒前
华仔应助gyx采纳,获得10
29秒前
iVANPENNY应助王烨采纳,获得10
30秒前
TOMMY233完成签到,获得积分10
32秒前
大模型应助quan采纳,获得10
33秒前
加菲丰丰举报woollen2022求助涉嫌违规
33秒前
34秒前
35秒前
沐颜发布了新的文献求助10
35秒前
渐渐的完成签到,获得积分10
36秒前
秋霜玉关注了科研通微信公众号
36秒前
之之完成签到,获得积分10
37秒前
40秒前
头与木发布了新的文献求助10
40秒前
李健的小迷弟应助张张采纳,获得10
40秒前
之之发布了新的文献求助10
41秒前
kangkang发布了新的文献求助10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316283
求助须知:如何正确求助?哪些是违规求助? 2948016
关于积分的说明 8538976
捐赠科研通 2624019
什么是DOI,文献DOI怎么找? 1435638
科研通“疑难数据库(出版商)”最低求助积分说明 665653
邀请新用户注册赠送积分活动 651512