A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments

计算机科学 差异进化 弹道 数学优化 水准点(测量) 轨迹优化 避障 运动规划 渡线 粒子群优化 地形 人工智能 算法 最优控制 移动机器人 机器人 数学 生态学 物理 大地测量学 天文 生物 地理
作者
Miaohan Zhang,Yuhang Han,Shiyun Chen,Mingxian Liu,Zhaolei He,Nan Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106672-106672 被引量:18
标识
DOI:10.1016/j.engappai.2023.106672
摘要

In response to the complexity of power repair in mountainous areas and the limitations of traditional vehicles due to terrain constraints, this study focuses on the three-dimensional trajectory planning problem of UAVs (Unmanned Aerial Vehicles) in mountainous environments. Our goal is to provide effective solutions for the trajectory planning problem of UAVs in mountainous environments. Firstly, a UAV trajectory planning model is established, incorporating optimization objectives such as energy consumption, trajectory cost, obstacle avoidance cost, smoothing cost, and stability cost. The trajectory planning problem is transformed into an objective function optimization task with multiple performance constraints. To overcome the inefficiency and infeasibility of traditional algorithms in solving complex three-dimensional flight environments, we propose improvements to the Differential Evolution (DE) algorithm through three strategies: incorporating mutation crossover factor optimization strategy, an adaptive guidance mechanism, and an elite disturbance mechanism based on population classification. The Multi-Strategy Improved Differential Evolution (MSIDE) algorithm is introduced, and its time and space complexity are analyzed. Finally, the proposed method is compared with various algorithms through benchmark functions tests, Friedman test, Wilcoxon rank-sum test, simulation experiments in three-dimensional environments, and parameter sensitivity analysis experiments. The simulation results show that compared with the current state-of-the-art algorithms, the MSIDE algorithm improves the objective function value by 11.34% on average in regular terrain and 5.04% on average in complex terrain environments. The results demonstrate the convergence, multi-objective search capability, and global search ability of MSIDE, validating its effectiveness in solving the trajectory planning problem of UAVs in complex mountainous environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空豁应助min2min采纳,获得10
刚刚
songcy7发布了新的文献求助10
3秒前
3秒前
脑洞疼应助白昼采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
zmj完成签到,获得积分10
7秒前
8秒前
搞怪斑马发布了新的文献求助10
8秒前
zhangmin发布了新的文献求助10
8秒前
万老头发布了新的文献求助10
9秒前
自觉小凡发布了新的文献求助20
9秒前
10秒前
kk完成签到,获得积分10
10秒前
ranjeah完成签到 ,获得积分10
10秒前
11秒前
得之我幸完成签到,获得积分10
12秒前
13秒前
激情的自行车完成签到,获得积分10
14秒前
14秒前
白蓝红完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
JamesPei应助科研小白采纳,获得10
16秒前
深情安青应助runtang采纳,获得30
16秒前
songcy7完成签到,获得积分10
16秒前
烟花应助六芒星采纳,获得10
17秒前
andy_lee发布了新的文献求助10
17秒前
18秒前
司徒水绿完成签到 ,获得积分10
18秒前
嘻嘻嘻发布了新的文献求助10
18秒前
削皮柚子发布了新的文献求助10
19秒前
俭朴蜜蜂发布了新的文献求助200
20秒前
依夏祭完成签到,获得积分10
21秒前
cc完成签到 ,获得积分10
21秒前
21秒前
天天快乐应助粤十一采纳,获得10
22秒前
YiJin_Wang发布了新的文献求助10
23秒前
乐情发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206