A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments

计算机科学 差异进化 弹道 数学优化 水准点(测量) 轨迹优化 避障 运动规划 渡线 粒子群优化 地形 人工智能 算法 最优控制 移动机器人 机器人 数学 天文 生物 物理 生态学 大地测量学 地理
作者
Miaohan Zhang,Yuhang Han,Shiyun Chen,Mingxian Liu,Zhaolei He,Nan Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106672-106672 被引量:18
标识
DOI:10.1016/j.engappai.2023.106672
摘要

In response to the complexity of power repair in mountainous areas and the limitations of traditional vehicles due to terrain constraints, this study focuses on the three-dimensional trajectory planning problem of UAVs (Unmanned Aerial Vehicles) in mountainous environments. Our goal is to provide effective solutions for the trajectory planning problem of UAVs in mountainous environments. Firstly, a UAV trajectory planning model is established, incorporating optimization objectives such as energy consumption, trajectory cost, obstacle avoidance cost, smoothing cost, and stability cost. The trajectory planning problem is transformed into an objective function optimization task with multiple performance constraints. To overcome the inefficiency and infeasibility of traditional algorithms in solving complex three-dimensional flight environments, we propose improvements to the Differential Evolution (DE) algorithm through three strategies: incorporating mutation crossover factor optimization strategy, an adaptive guidance mechanism, and an elite disturbance mechanism based on population classification. The Multi-Strategy Improved Differential Evolution (MSIDE) algorithm is introduced, and its time and space complexity are analyzed. Finally, the proposed method is compared with various algorithms through benchmark functions tests, Friedman test, Wilcoxon rank-sum test, simulation experiments in three-dimensional environments, and parameter sensitivity analysis experiments. The simulation results show that compared with the current state-of-the-art algorithms, the MSIDE algorithm improves the objective function value by 11.34% on average in regular terrain and 5.04% on average in complex terrain environments. The results demonstrate the convergence, multi-objective search capability, and global search ability of MSIDE, validating its effectiveness in solving the trajectory planning problem of UAVs in complex mountainous environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiii发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
风清扬发布了新的文献求助10
4秒前
情怀应助负责的方盒采纳,获得10
4秒前
望TIAN完成签到,获得积分10
5秒前
WWW完成签到,获得积分10
5秒前
6秒前
汉堡包应助欢喜的祥采纳,获得10
6秒前
xiaoyu完成签到,获得积分10
6秒前
7秒前
打打应助王艺霖采纳,获得10
9秒前
9秒前
cll完成签到 ,获得积分10
10秒前
11秒前
11秒前
NBSHR完成签到,获得积分10
12秒前
orixero应助顺利的豌豆采纳,获得10
12秒前
12秒前
面壁思过发布了新的文献求助10
13秒前
13秒前
YH完成签到,获得积分10
13秒前
机智跳跳糖完成签到,获得积分10
13秒前
宇文半邪发布了新的文献求助10
15秒前
15秒前
16秒前
Mic应助星期日不上发条采纳,获得30
16秒前
www完成签到,获得积分10
17秒前
NBSHR发布了新的文献求助10
17秒前
熊熊发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
牛马发布了新的文献求助10
18秒前
dian发布了新的文献求助10
18秒前
英俊的铭应助等待的三问采纳,获得10
18秒前
好好发布了新的文献求助10
19秒前
大个应助帅气航空采纳,获得10
20秒前
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233