A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments

计算机科学 差异进化 弹道 数学优化 水准点(测量) 轨迹优化 避障 运动规划 渡线 粒子群优化 地形 人工智能 算法 最优控制 移动机器人 机器人 数学 天文 生物 物理 生态学 大地测量学 地理
作者
Miaohan Zhang,Yuhang Han,Shiyun Chen,Mingxian Liu,Zhaolei He,Nan Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106672-106672 被引量:18
标识
DOI:10.1016/j.engappai.2023.106672
摘要

In response to the complexity of power repair in mountainous areas and the limitations of traditional vehicles due to terrain constraints, this study focuses on the three-dimensional trajectory planning problem of UAVs (Unmanned Aerial Vehicles) in mountainous environments. Our goal is to provide effective solutions for the trajectory planning problem of UAVs in mountainous environments. Firstly, a UAV trajectory planning model is established, incorporating optimization objectives such as energy consumption, trajectory cost, obstacle avoidance cost, smoothing cost, and stability cost. The trajectory planning problem is transformed into an objective function optimization task with multiple performance constraints. To overcome the inefficiency and infeasibility of traditional algorithms in solving complex three-dimensional flight environments, we propose improvements to the Differential Evolution (DE) algorithm through three strategies: incorporating mutation crossover factor optimization strategy, an adaptive guidance mechanism, and an elite disturbance mechanism based on population classification. The Multi-Strategy Improved Differential Evolution (MSIDE) algorithm is introduced, and its time and space complexity are analyzed. Finally, the proposed method is compared with various algorithms through benchmark functions tests, Friedman test, Wilcoxon rank-sum test, simulation experiments in three-dimensional environments, and parameter sensitivity analysis experiments. The simulation results show that compared with the current state-of-the-art algorithms, the MSIDE algorithm improves the objective function value by 11.34% on average in regular terrain and 5.04% on average in complex terrain environments. The results demonstrate the convergence, multi-objective search capability, and global search ability of MSIDE, validating its effectiveness in solving the trajectory planning problem of UAVs in complex mountainous environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的慕山完成签到,获得积分10
刚刚
王嘉尔完成签到,获得积分10
1秒前
CodeCraft应助丁座采纳,获得10
1秒前
领导范儿应助ZZZ采纳,获得50
3秒前
4秒前
4秒前
酷波er应助白芷采纳,获得10
4秒前
CAOHOU举报lullaby求助涉嫌违规
6秒前
Owen应助典雅的荣轩采纳,获得10
7秒前
liuxl完成签到,获得积分10
7秒前
7秒前
埃尔拉发布了新的文献求助10
8秒前
立军发布了新的文献求助30
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
aaaa发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
高高发布了新的文献求助10
13秒前
Owen应助mjt采纳,获得10
14秒前
15秒前
SYLH应助小次之山采纳,获得20
15秒前
琳琳琳lin发布了新的文献求助10
16秒前
16秒前
酷波er应助善良的冷霜采纳,获得10
17秒前
梁三柏应助浮华采纳,获得20
18秒前
19秒前
20秒前
包容的映天完成签到 ,获得积分10
20秒前
ED应助博修采纳,获得10
20秒前
LHL完成签到,获得积分10
21秒前
Ashley完成签到,获得积分10
21秒前
阔达翠彤完成签到,获得积分10
23秒前
大个应助宽厚的肩膀采纳,获得10
23秒前
23秒前
顺利的爆米花完成签到 ,获得积分10
24秒前
24秒前
星辰大海应助朝韵采纳,获得10
24秒前
笨蛋琪露诺完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010191
求助须知:如何正确求助?哪些是违规求助? 3550174
关于积分的说明 11305110
捐赠科研通 3284653
什么是DOI,文献DOI怎么找? 1810748
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451